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I, INTRODUCTION

This dissertation consists of a study of the interactions
of CO with Ar, The Ar-CO system is of particular interest since Ar is
often used as a buffer gas in the CO laser. Theoretical calculations
are essential in understanding the detailed mechanisms which produce
the population inversion and subsequent lasing. Calculations of rate
constants can be very useful in understanding the experimental rates,
i,e., what are the effects of rotational transitions, energy defects,
and anharmonicities. Theoretical rates can also be calculated for
temperature ranges and transitions which are difficult to obtain
experimentally., The results of the present study represent the most
extensive calculations ever to be performed on the Ar-CO system.

In order to study the interactions of CO with Ar theoreti-
cally, one must first determine the distance, angle, and vibration
dependence of the potential energy surface. Because of the large
number of electrons in the Ar-CO system, construction of the potential
energy surface using conventional self consistant field (SCF) and
configuration interaction (CI) methods is extremely time consuming
and not feasible using present-day computers, However, the electron
gas method developed by Gaydaenké and Nikulin [1] and Gordon and
Kim [2] has been very successful in predicting the short range inter-
actions of other closed shell systems., Modifications suggested by Cohen
and Pack [3] and Gordon and Kim [4] to give the correct long range
behavior have resulted in potential energy surfaces which are smooth
and reasonable everywhere, and it is believed that this model should
work reasonably well for the Ar-~CO system., Thus, we have programmed
the method for atom-molecule [5] and molecule-molecule [6] (Appendix C)
interactions and used it to calculate an Ar-CO potential energy sur- -
face, Secondly, in the study of the interactions of the Ar-CO system
one must perform detailed scattering calculations. Since CO has a

small rotational constant, many states are strongly coupled together
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by the collision, and it is not possible to include enough states in
the usual close coupling method [7] to obtain convergence except at
very low energies, However, the infinite order sudden approximation
(which decouples the rotations) has been shown [8-12] (ref. 9 is
Appendix A) to be an excellent approximation when the reduced mass of
the system is large, at high relative kinetic energies, small total
angular momentum and when the rotational constant of the molecule is
small, Hence, it should be very accurate for rotational transitions
in the Ar-CO system allowing a much smaller number of vibrationally
coupled scattering equations to be solved numerically.

In chapter IT we use the electron gas model to calculate
the distance, angle, and vibration dependence of the Ar-CO potential
energy surface. The electron gas potentials are quite reasonable in
the repulsive region but fail to give the correct long range van der
Waals behavior, However, modifications suggested by Cohen and Pack[3]
and Gordon and Kim [4] to include the long range behavior are used to
- get potentials which are smooth and reasonable everywhere, To imple-
ment the modifications suggested by Cohen and Pack [3] requires one
to know the van der Waals interaction coefficients. By using available
experimental refractive index data, one can obtain accurate values and
error bounds for the van der Waals interaction coefficients using the
Pade” approximant methods of Langhoff and Karplus [13]. In addition to
calculating the Ar-CO interaction, we have used this procedure to
calculate the van der Waals interactions of co, [14], CO [15] (Appendix
E), and NO [16] (Appendix F) with He, Ne, Ar, Kr, Xe, H, Li, Na, K, Rb,
Cs, H2, N2, 02, C02, CO,and NO. Molecules (such as NO) in II-electronic
states are very interesting since the interaction with an S-state atom
breaks the degeneracy of the II-state and two potential energy surfaces
arise; one for which the electronic wavefunction is symmetric and one
for which it is antisymmetric under reflection in the triatomic plane.

In chapter III a simple and yet transparent derivation of
the infinite order sudden [8-12] (ref, 9 is Appendix A) approximation
is presented. We then obtain simplified expressions for the scattering
amplitude and differential cross section in the infinite order sudden

[8-12] (xref. 9 is Appendix A) approximation. These expressions should



be very useful in determing angle dependent potentials which reproduce
differential cross sections obtained from molecular beam experiments.

Even though the sudden approximation is used, the numerical
solution of the coupled differential scattering equations involved can
be very time consuming, However, by using a combination of the two
most popular methods (integral equations [17] and Airy function expan-
sion [18]) we were able to propagate the solution 5 times as fast as
either method alone, ' We used this combination of the two methods to
determine the vibrational transition probabilities at several energies
and then determined vibrational relaxation rates. Since vibrational
relaxation mechanisms are very important (as in theoretical modeling of
gas lasers) in molecular energy transfer studies, numerous experimental
techniques (such as: relaxation behind shock waves [19], acoustic
absorbtion [20], relaxation behind wave expansion [21,22], and laser
fluorescence [23]) have been exploited and experimental vibrational
relaxation rates are known for many systems. These experimental values
are compared with our calculated rates,

In chapter IV we conclude with some remarks on the validity

of this approach,



II. THE Ar-CO INTERMOLECULAR POTENTIAL

In the first section of this chapter we define the
coordinate system used and briefly describe the calculation of the
short range potential via the electron gas model. In section B this
potential is fit to an analytic form. The van der Waals interaction
coefficients are determined in section C, Then, in section D the
short and long range potentials are joined to give a potential which
is smooth and reasonable everywhere. We then make necessary adjust-

ments and compare with available experimental data in section E,

A, Calculations

We summarize the electron gas model only briefly here,since
a detailed description of the model [6,24,25] and our particular method
of computation are given in Appendices B, C and D, For the interaction
of a vibrating diatomic molecule BC (in this case CO) with an atom A
(in this case Ar) the interaction potential using the coordinates of

Fig. 1 can be defined as,
V(r,e!R) T E(I‘,e,R) - E(~,any e:R)’ (2-1)

where E is the electronic energy.
To calculate V using the electron gas model one approximates

the electron density p of the combined system as,

P =Py * Ppe (2-2)

then calculatesthe potential energy from functionals of the unperturbed
electron densities Pa and Ppc* These functionals are the coulombic
interaction energy and integrals over the kinetic, exchange, and
correlation energy densities of a uniform free electron gas. For the

4



c. of m. of system

¢. of m. of co

Fig. 1. -- Center-of-mass coordinates used in the Ar-CO potential.



calculation reported herein we have used Rae's [26] exchange energy
correction, This self exchange energy correction is simply a multipli-
cative constant times the exchange energy term (see Appendix B) and is
similar to the a in Xo [27] caleulations.

For subsequent fitting, the resulting interaction potential
is written in terms of the electron gas estimates of the Hartree-Fock

and correlation energy contributions,

V(r,8,R) = Vo (r,8,R) + Vo (r,0,R) (2-3)

COR

as defined in Appendices B and D,

To calculate the electron densities pAuand pBC needed we
used the Ar SCF wavefunctions of Clementi [28] and the CO SCF wave-
functions of Mclean and Yoshimine [29] (their wavefunctions were calculated
at 6 equally spaced values of the vibrational coordinate R ranging from
1.898 a.u. to 2.483 a.u.). The potential energy surface was calculated
at 14 equally spaced values of the Ar-CO distance r from r=2,5 a,u,
to r=9.0 a.u,, the six equally spaced values of R, and 12 values of
x=cosf, which are the zeros [30] of the 12th Legendre polynomial
Plz(x),(These points are optimum [31] for expansion of the potential
in Legendre polynomials,) for a total of 1008 points. The computational
time required was roughly 5,5 hrs, on the CDC 7600 computer or about
20 sec./point on the potential energy surface, Conventional configuration
interaction programs would require 10-15 min./point or a total of
170-250 hrs, of CDC 7600 computer time,

Subsequent to the completion of the calculations reported
herein, we have found and reported elsewhere [24] (Appendix B) a much
faster (~2 sec./point) and more accurate procedure for doing the calc-
ulation. Also,since the computational time requirement for the electron
gas model is completely independent of the number of electrons in the
system,it is possible to calculate the potential between interacting

systems with a large number of electrons,



B. Fitting of the Short Range

Potential
Rather than give a large table of all the calculated points
on the surface, (1008 points for each of the potential energy contribu-
tions VHF and VbOR) only the parameters that are necessary to
accurately fit the potential will .be given,
An attempt was made to fit the Vi(i =HF or COR) to the fol-

lowing form,

11 2
V, (r,0,R) = zo: Z Vllm(r)Pn(x) (R-Re)m’ (2-4)
n=

m=0

where Re is the equilibrium internuclear distance of thg CO molecule
(2.132 a.u.), but this resulted in oscillations in the Vim(r) for n#0,
m#0. Consequently, we were unable to find a simple analytic function
with a few adjustable parameters to accurately fit the Vim(r). However,

for each of the vibrational separations of CO a fit was obtained using,
8 .
> —mi
V. (x,0,R ) =) VI(r) P (x)
n=

8 2
=y, %y R T P_(x). (2-5)

The parameters used in fitting the surface at the equilibrium position
of CO are given in Table 1. This fit resulted in a standard fractional
deviation of 2%.

As discussed in the next chapter our main interest was in
calculating the vibrational relaxation of CO interacting with Ar, treat-
ing the rotations in the Infinite Order Sudden approximation [8-12]
(I0S) and using the close-coupling method (CC) for the vibrations. For
this one needs only to have an analytic fit of the potential at each
angle. The following form was chosen to separately fit the correlation

and Hartree-Fock energy contributions,



TABLE 1. -- Parameters used in Eq. (2-5) for fitting the short
range Ar-CO electron gas intermolecular potential

i=HARTREE FOCK

n=0 n=1 n=2 n=3 n=4 n=>5 n=6
aﬂl 15.973  -.4009 31.726 -4.815 17.358 -1.984 .930
aﬂl .7536  .1433  1.0909 1.0862 1.5357 1.3922 1.3951
Eﬁi .0910  .1019 .0468 .0277 0.0 0.0 0.0

1=CORRELATION

n=0 n=1 n=2 n=3 n=4 =5 n=6
Eﬁl -.1826 .0192 -.0570 .0028 -.0143 .0022 .0008
aﬂl L6513  .6444 .4865 .0710  .7925 .7684 J7213
—mi
B .0326 0.0 .0354 .0575  .0076 0.0 0.0




= ki m
> v i@ ®R-R)

m=0
2 ki ki ki 2 ki 3 -akir i
= (a Lip trac e dtr ) o 0 (R-R) (2-6)
m m m m e’
m=0

for each of the 12 angles. A linear least squares algorithm was used

for determining the linear coefficients and a nonlinear search for the

nonlinear parameter to minimize the percent deviation rather than the
standard deviation. This resulted in a deviation of 1.8%. The results

of this fitting procedure are given in Tables 2 and 3.

C. The Long Range Potential

As noted elsewhere [3] , if one attempts to construct the
potential energy surface by simply adding together the VHF and VCOR
contributions he obtains a potential which does not have the correct
long range behavior, This is due to the fact that the electron gas model
does not allow for any rearrangement of the electron densities; hence,it
does not have induction and dispersion contributions. As is well
known [32], the correct long range behavior of the intermolecular

potential can be expressed in terms of van der Waals coefficients as,

ok 6 7 8
VL.R(r,x) C6/r - C7/r 2 C8/r i

-

i [c6(0) C6(2)P2(x)] ; [C7(1)P1(x)+C7(3)P3(x)

B 3
;§-ICS(03+CS(2)p2(x) + C8(4)P4(x)] B (27

We have determined and reported elsewhere [15] (Appendix E) the C6 coef-
ficients of CO interacting with several atoms and molecules including
Ar, and, for completeness,the resulting C6 coefficients for the interac-
tions of CO are given in Table 4 along with higher order coefficients

determined in the following subsections. The notation and method



TABLE 2. -- Parameters used in Eq. (2-6) for

at each angle (k labels the angle)

fitting the Ar-CO electron gas Hartree-Fock contribution

m=0 i = HARTREE-FOCK
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12
a:;l 1.875 1.788 1.775 1.774 1.235 1.207 1.211 1.365 1.443 1.903 1.947 2.002
a:;l 3865 1736 785.6 308.9 30.75 32.77 37.78 38.95 37.21 195.8 629.9 1408
b]“(‘1 -2539 -1132 -517.3 -199.9 1.965 -6.269 -8.524 2,201 18.37 -92.90 -390.9 -952.6
11;1 577.6 272.3 136.7 62.24 -.6521 .1716 .4807 -1.924 -5.231 57.41 141.2 289.6
drl;l -34.80 -17.88 -9.539 -4.770 .0548 .0134 0 +1333 .3043 -5.476 -11,57 -21.,80
m=1 i = HARTREE-FOCK
k = k=2 k=3 k=14 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12
oc:;l 1.984 1.941 1.944 1,309 1.383% 1.287 1.,27% 1.717 1.768 1.836 1.916 2,012
a1]1<11 7480 3126 993.3 -17.35 -27.39 -21.51 -22.44 14.19 72.40 304.6 1023 2554
b:;l 1709 -2042 -717.5 12.55 13.06 9.398 10.67 -31.53 -73.72 -225.3 -686.2 -1694
crl;l 986.3 454.7 177.9 -2.118 -1.886 -1.279 -1.491 12.24 25,29 65.96 175.2 405.1
dlr;i -57.00 -27.79 -11.55 .1047 .0860 .0557 .0648 -.9870 -2.036 -4.838 -11.97 -26.08

0T



TABLE 2. -- Continued
m=2 i = HARTREE-FOCK

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=28 k=9 k=10 k=11 k=12
a]r;i 2.257 2.387 2.328 1.146 .7817 1.477 1.513 1,492 1,046 1,607 1.853 2.031
a:;i -2798 -14739 -4641 -5.769 -1.921 15.56 17.10 9.639 -5.159 24.62 478.7 1855
br];i 5124 14023 4135 1.657 .7289 -11.66 -12.95 -9,244 2,326 -21.60 -307.9 1142
clnii -1921 -4214 -1205 -.1112 -.0906 2.285 2.569 2.073 -.3166 6.052 67.03 232.4
d:‘i 218.2 417.9 116.4 0 .0037 -,1309 -.1480 ~-,1275 .0136 -.4219 -4,071 -12.69

It



TABLE 3. -- Parameters used in Eq. (2-6) for fitting the Ar-CO electron gas correlation energy
contribution at each angle (k labels the angle)

ki
o,
m

ki
a

m
bkl

m

ki
cm

ki
dm

i = CORRELATION
k=6 k=7 k=28 k=9 k=10

k=11 k=12

.9086 .8898 1.036 1.038 1.040
-.1517 -.1793 -.1540 —.1691 -.1845
-.0555 -.0384 -.1015 -.1176 -.1409
.0108 .0099 .0107 .0122 .0142

-.0004 -.0005 0 0 0

ki
m
ki

a
m

bki
m
ki
c
m
ki

m

d

i = CORRELATION
k=6 k=7 k=8 k=9 k=10

.9167 .8707 .8763 .9094 .9487
.0610 .0538 .0530 .0540 .0504
-.0269 -.0281 -.0360 -.0506 -.0702
.0020 .0021 .0028 .0040 .0056

0 0 0 0 0

1.044 1.051
-.2013 -.2107
-.1653 -.1866
.0164  .0180
0 0
k=11 k=12
.9841 1.015
.0409 .0343
-.0916 -.1114
.0073  .0085
0 0

A



TABLE 3. -- Continued

m= 2 i = CORRELATION
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=38 k=9 k=10 k=11 k=12
o 1.431 1.464 .9621 .9013 . 8867 .8871 .9350 1.016 1.291 1.384 1.433 1.438

)I;i 1.821 1.088 -.0255 -.0214 -.0229 -.0166 -.0148 -.0131 .0106 . 1497 . 3244 .5018
b:;i -1.508 -.9964 .0470 .0320 .0279 .0221 .0221 .0245 .0076  -.1105 -.2715 -.4127
c:;i .4490 .3443 -,0130 -.0078 -.0063 -.0050 -.0050 -.0057 .0038 .0388  .0843 .1162
d;i -.0513 -.0428 .0008 .0005 .0004 .0003 ,0003 .0003 -.0015 -.0060 -.0119 -.0151

A |
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TABLE 4. -- van der Waals interaction coefficients through C_, for the
interactions of CO with various partners

Coefficient He Ne Ar Kr Xe
C6(O) 1Y¥.2% .8 23.8+2.5 78.2+ 7.6 111 #:12 192 £ 25
C6(2) 94 % ,27 1.99% .65 6.55%22.06 7.3%£3.0 16.1.* 5.7
C7(1,ind) 41+ .06 +AIE 12 3.28% .48 4.95+ .73 8.1+£1.2
C7(1,dis) 2.1%1.6 4.4% 3.7 14, £12 20, 17 35&31
C7(1) 2.5%1.7 5.1+ 3,8 18+ 1.2 25. 18 42 *+ 32
C7(3,ind) 27 = .04 «935% ;08 2.19% ,32 3.30% .48 5.38% .79
C7(3,dis) 13 % .15 ood &35 94%1.1 1.33£1.6 2.30%£2.9
C7(3) .41+ .19 81+ .42 3.12%1.4 _4.6312.1 7:69%3,7
A44(0,2,ind) 5.8%1.2 1. £2 46 £ 10 70+ 15 114+ 24
‘A44(0,1,dis) 54.%5.0 128+ 21 688 + 105 1060 + 174 2402 = 448
A44(0,2,di5) 101 + 25 215+ 62 708 £ 197 1004 £ 293 1738 * 552
A44(0,1,ind) 015 .001 .039% .004 .292+ .031 .477%.049 .776% .076
C8(0) 161.4 + 31 354+ 85 1442 + 312 2135+ 482 4254 £ 1025
b,4(2,2,ind) 6.6:t1.4  12.7:2.7 53%11 80+ 17 130 + 28
A44(2,1,dis) 3.6%1.1 8.5% 3.3 46 + 18 71+ 28 160+ 68
A44(2,2,dis) 10.4 4.’4 22.+10 72+ 34 103 %49 178 £ 90
2A35 (2,dis) 40.0+21.4 85%49 279 £ 159 297 & 232 686 + 424
2A35(2,ind) 1.4+ .4 2.8% .8 12£3 17 €5 28+8
A44(2,1,ind) L0124 001 .031+ .003 .23%,02 .38+ .04 62+ ,06
CS('Z) 62 + 28 131 67 462 + 225 668 + 332 1183+ 618
A44(4,2,ind) 5.0%1.1 9.5+£2.0 39.7+£8.5 60.,.0%12,8 9821
A44(,4,2,dis) 49 + .30 1.0% .71 3.4%2.3 4,9%3.3 8+6
2A35(4,dis) 2.4+1.8 5.2+4.2 17.0+£ 13 24.1%20 42 * 35



TABLE 4, -- Continued

15

B ;

Coefficient He Ne Ar Xe
2A35(4,ind) .80+ .23 1.5% .4 6.4+1.8 9.7+2.8 15.8+4.5
67 £ 26 99 *+ 39 164 + 67

C8(4) 8B.7%23 17 &7
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is that of Pack [32] in his studies of van der Waals coefficients for
atom-linear molecule systems, except that we denote the atom by A and the

molecule by BC.

i. The CZVCoefficient

As shown elsewhere [32] the C7 coefficients can be written

in terms of induction and dispersion contributions,
C7(n) = C7(n,ind) + C7(n,dis), n=1 or 3. (2-8)

The induction contributions are

C,(1,ind) = E 11 (BC) 6 (BC)a (A) (2-9)

and

12

C,(3,ind) = = u(BC)6(BC)a(A), (2-10)

where 0.(A) is the polarizability of the atom A, and M (BC) and 6(BC) are
the permanent dipole and quadrupole moments of the molecule BC.

Using the labels n and v to identify the electronic states
of A and BC, respectively, the dispersion contributions can be written

-

in terms of the generalized oscillator strengths,
eH = H M
£, = 26 <\)IQ2|0>* <\)|Q2’,.|o>,.- (2-11)
as

C (1 dlS) = 5 z: WT [fo\)(l,Z)'l'/?)— fO\) (1,2)] (2—12)

and



L7

(o]
I o ¢ oy

C.(3,di _6 £ 1. 2 ¢l 1
7( »dis) = 5 :E: Ensv(sn+€vi [ ov( vl] = /3 ov( g )] (2-13)
Vv,Nn g

where ev are the electronic excitation energies, and the double prime on
the sum implies omission of all the terms with either n=0 or v=0. The

multipole moment operators in Eq. (2-11) are given by,

¢ (80) = [4n/(20+1)1Y/ ngc z, TS Yp(8,,6:), (2-14)

where the summation is over all the electrons and nuclei belonging to
BC, the coordinates are measured from the center of mass of BC, and
the z-axis is taken to be along the diatomic R axis. Similar formulas
hold for atom A. Upon replacing the arithmetic mean (ev + en)/2 by the

)1/2

geometric mean (Qoen in Eqs. (2-12) and (2-13), one obtains good

approximations to the van der Waals coefficients,

o fy(8) [ (2-5) - k2 )
C,(1,dis) =~ 7= sA(1,1, =) |85c (1:2,-5) + V3 55,(1,2,-3 (2-15)
~and
son w8 3 o 3y .2 ¢l 3 ] 3
C,(3,dis) = 735 SA<1’1’ 2) [SBc(l’z"2> Wew SBC<1’2’ 2) ke8]

in terms of the generalized oscillator strength sums,

U 4 2y o - M -k f
Spe(2,27,K) = }E: £ 2y, (2-17)
Vv

where the prime on the sum implies omission of the v=0 term. For the

spherical atom the SK are independent of u. Using an oscillator model

in which the center of charge is displaced by a distance of z, from the
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center of mass, one obtains an expression for the Sgc(l,Z,k) in terms of
u
SBC(l,l,k) as [32],

o - o !
§5,(1,2,k) = 2 z§2.(1,1,k) (2-18)
and
gl (1,2,5) =/F z8% (1,1, (2-19)
c(1s2s s Bg e L)y

Since the C6 coefficients are expressed in these same quantities [32]

D b 2okl
SA(1,1,-2 [SBC 1,1,-5) +255.(1,1,-5)| (2-20

B b=

C6(0,dis) ~
and

Cy(2,dis) ~ sA(1,1,-%) [SZC(I,I,—%> 5 5113(:(1,1,-%)] (2-21)

PN

the C, coefficients can be written in terms of the C_ coefficients as,

7 6

C7(1,dis) =6 z, C6(0,dis) + (2,dis) (2-22)

1
Tl

-

and

24 Z,

C,(3,dis) ~ - Cc(2,dis). (2-23)

ii. The C8»Coefficients

The procedure used in determining the C8 coefficient

C8 = C8(0) + C8(2) P2(x) + C8(4) P4(x) (2-24)
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is the same as that given by Pack [32], and it is recommended that the
reader refer to that paper for details. We only give the formulas that
are necessary in its construction. Again each of the coefficients in
Eq. (2-24) can be written in terms of induction and dispersion contri-

butions,
C8(L) = C8(L,ind) + C8(L,dis). (2-25)

It is convenient to express the induction and dispersion contributions

as
2
Cg(L,ind) = 2 A (L,ind) +:E: 8,,(L,%,ind) (2-26)
2=1
and
2
Cg(L,dis) = 2 A (L,dis) +:£: Byq(L,8,dis). (2-27)
2=1
The induction terms are,
B45(0,ind) = 0, (2-28)
1 _ 18 - .
AL (2,ind) = == u(BC)Q,(BC)a(A), (2-29)
h 10 s
Az (4,ind) = == 1(BC)Q4(BCIa(A), (2-30)
A, (0,1,ind) = 2 u2(BC)q(A) (2-31)
44 12 2 qud,
L5 _ 2

A,,(4,1,ind) = 0, (2-33)
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8,,(0,2,ind) = 3 6*(BC)a (M), (2-34)

8,4(2,2,ind) = 2 6%(BC)a(A), (2-35)
and

B, ,(4,2,ind) = —g—BZ(BC)OL(A), (2-36)

where ﬁg(BC) is the permanent octupole moment of the molecule and q(A) is
the quadrupole polarizability of A. By replacing the arithmetic by the

geometric mean, Pack [32] was able to express the dispersion contributions

as
A, (2,dis) ~ L2 a(- i) A (0,2,dis) (2-37)
352> 7 7] B44\0s4,018),
cin o 2D 5 . y
Dy (4,dis) =~ 2 b (-3) 4, (0,2,dis), (2-38)
o o : i
A44(0,1,d15)_ Y ’2— C6(0,d15,A,B) CS(A)A)/C6(A,A)’ (2 39)
A (2,1,dis) ~ 2 d(- E)A (0,1,dis) (2-40)
442515 5 4(-3)844(0,1,d15),
1
- z = - - - 2_
A,4(0,2,dis) ~ 5 C.(0,dis,A,B) Cg(0,dis,B,B)/C(0,dis,B,B), (2-41)
B, (2,2,dis) =2 e(- 5) A, (0,2,dis) (2-42)
44'%:25 7 Bl ) Sag P pradis),
A h 2dt) =& g(-i) A (0,2,dis) (2-43)
4477 7 2/ TR ;
Here,

= [s® sk o 1 2-44
a(k) Spc(1,1,K) SBC(l,l,k)]/[SBC(I,I,k)+ZSBC(1,1,k) ; ( )
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I 1 2
b(k) = ISBC(Z,Z,k)+SBC(2,2,k)-2 sBC(z,z,kﬁ/

0 1 2
2=
[SBC(Z,Z,k)+2 S1.(2,2,%)+2 sBccz,z,k)], (2-45)

4

N e 1 L =2
400 = [89.(2,2,0-F §3.(2,2,00+5 82.(2,2,0]/

[sgccz,z,k)+2 S;C(Z,Z,k)+2 S§C(2,2,k)] ) (2-46)
1/2
o 2
ek} = sBC(l,s,k)+z(3) SBC(l,S,k)]/
0 1 2 ]
Soc(2,2,042 S3.(2,2,K)+2 52.(2,2,K), (2-47)
g0 = [s5.(1,3,0-(3) " spc1,3.0] /
0o 1 2
59:(2,2,10+2 5;.(2,2,K)+2 sBC(z,z,k)]_ (2-48)

Pack [32] obtains values for the quantities in these equations by use of
the oscillator model. The results for the interactions of CO with sev-
eral atoms are given in Table 4. The error estimates may be small, but

we feel that they are reasonable.

-

"'D. Addition of the van der Waals Tail

We can obtain a potential which has the correct behavior at
both short and long range by wusing a simple generalization of the:meth-

od used by Cohen and Pack [3] for atoms. This can easily be done by

letting,
VkCOR (r) , TST
m m
vﬁCOR(r) = (2-49)
k., KCOR -
VL.R. (r,xk)Am + Bme (r). %
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where the ri are the points where the logarithmic derivatives (with
respect to 1) of the two forms are equal (this insures that the first deriva-
tive is continuous). The B}; were chosen to make the potential continuous
at ri and hence continuous everywhere. In order to get a rough estimate
of the vibrational dependence of the long range interaction the Am were
chosen to be the angle average of the vibrational dependence of the
short range potential at the point where the logarithmic derivative of

the short and long range potentials are equal, i.e.,

12
L, kcor k kcor k
A= (x))/ Z w Voot (x) (2-50)
k=1

where the w, are the weights [30] associated with a 12-point Gauss-
Legendre quadrature. We could have obtained a more accurate long range
vibrational dependence of the induction terms by using expansions of the
dipole, quadrupole:and octupole moments in powers of (R—Re) but did not
because the exact long range vibrational dependence should have little
effect on the vibrational relaxation of CO for reasons discussed in the
next chapter. Also the largest contributions are usually the dispersion
terms, whose vibrational dependence would have been difficult to obtain

accurately. The results of the above procedure are given in Table 5.

E. Results and Comparison with Experiment

) In this section we compare the second interaction virial
coefficients obtained from our calculated potential With the experimental
values of Brewer [33] and also compare our spherically averaged poten-
tial with a spherical potentidl of Jordan et al, [34] which was inferred
from their high energy scattering data. Vibrational relaxation data
will be used to further test ‘the potential in chapter III.

We determined the interaction second virial coefficients

of the Ar-CO system at the equilibrium position of CO using [35]

oo 2 1
B(T) = 1!/ rdr dx {1-exp[-V(r,x,Rg)/kT]} (2-51)
(] -1



TABLE 5. -- Parameters used in Eq. (2-49) for smoothly joining the short
estimate to the long range van der Waals tail

range electron gas correlation

k
T
m
m 1 2 3 4 5 6 7 8 9 10 11 12
0 6.819 6.729 6.626 6.484 6,297 6:113 6.008 5.995 6,029 6.072 6.107 6.129
1 6.347 6.294 6.193 6.117 6.427 6.982 7.060 6.972 6.848 6.725 6,626 6.574
2 7.636 7.553 7.844 8.136 8.266 8.337 8.416 8.340 8.018 7.548 7273 7.203
Bk
m
m 1 2 3 4 5 6 7 8 9 10 11 12
0 L6137 .5628 .4625 .2997 .0763 -.1411 -.2444 -.2113 -.1045 .0006 .0759 .1165
1 .8863 .8476 .7386 .4541 .1050 .3874 .6443 .7586 « 8132 .8416 .8566 .8638
2 . 9881 .9830 .9730 .9584 .9426 .9252 L9110 .9183 .9398 L9577 .9672 9715
A
m
m=0 m=1 m=2
1.0 .3084 .0763

£e
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where k is Boltzmann's constant and T is the absolute temperature. Vi-
brational averaging of the virial coefficients should be unnecessary for
the temperature range {T=100—3000K) of concern to us because the CO vi-
brational motion contributes little at these temperatures. In evaluation
of Eq. (2-51), we used a-48-point Gauss-laguerre quadrature for the r inte-
gration and a 48-point Gauss-Legendre quadrature for the x=cos6 integration,
The results (in cc/mole) are shown in Fig. 2, where one sees that our virial
coefficients (--- dashed line) are too large. This implies that our
short range potential is too repulsive or the long range potential is
not attractive enough. Had Rae's [26] self exchange energy correction
not been used, we may have obtained better agreement. For some systems
this correction seems to improve the agreement but not for others. We
now believe that this self exchange energy correction (which is similar
to the o in Xo [27}ca1cu1ati6ns) should be varied as an empirical
parameter to fit the experimental second virial coefficients or other
data. Since we determined only the Hartree-Fock estimate which is

the sum of the exchange, kinetic, and coulombic energies

Var = Vex * Vkan * Veour

(2-52)
we had no way of doing this, so that it was necessary to scale the

Hartree-Fock and short range correlation electron gas estimates to fit
the experimental Virialycoefficients. An excellent agreement (percent
deviation of 0.2%) was obtained using scaling factors of 0.77 and 2.62
respectively for the Hartree-Fock and short range correlation energies.

Our new potential is now given by

Vew 0.05 = 0.77 Vyp(r,0,k) + Voo (r,8,R) (2-53)
where
: =kCOR
m
VCOR(r’eR’R) N :E: Vi, @) R (2-54)

m=0
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Fig. 2. -- Comparison of calculated and experimental interaction
second virial coefficients, Dashed line --- before adjustment,

Solid line — after adjustment.
values of Brewer ref, 14.

Triangles A are the experimental
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and
-kCOR
2.62 V""" (x) k
KCOR _ Ty,
- (2-55)
k. kCOR k
LR(r Bk)A o 1 62+B)V (r) rzrm

A plot of oﬁr new virial coefficients (— solid line) is also shown in
Fig. 2 and,as can be seen,they are in excellent agreement (within
experimental error) with thé experimental values of Brewer.

In Fig, 3 we compare our spherically averaged potential
~%ithfa spherical potential of Jerdan et al, [34] . Their potential
was obtained from fitting their high energy Ar-CO scattering data to a

spherical potential of the form

V(r) = A/r’  2.09 A<r<2.68 A. (2-56)

They obtained A = 551 and Yy = 6,99 with the potential given in e.v. -
The agreement is excellent considering that a spherical potential fit
to scattering data need not be the spherical average of the true
potential,

The contour plot in Fig. 4 is that of the Ar-CO inter-
molecular potential at the vibrational equilibrium position of CO
V(r,e,Ré). The values of the contours are given in Table 6. As can
be seen the potential has a minimum of roughly -.0004 a.u. (130°K) deep.
The -.0004 a.u. contour extends almost completely around the COmolecule
which indicates that the minimum is very flat.

The contours shown in Fig. '5 are of the vibrational
derivative of the potential at the equilibrium position of CO,

9

3R V(r,G,R) IR:R

e (2-57)

where the value of the labeled contours are given in Table 7.
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V(e.v.)

0.4 | 1 1 | . i
2,1 2,2 2;3 2,4 2.5 2.6 2T
o
T(A)
Fig. 3. -- Comparison of our spherically averaged potential with a
spherical potential fit to high energy scattering data. Solid line —
Dashed line --- the spherical potential

result of present calculations.
of Jordan et., al. ref.



Fig, 4. -- Contour plot of the Ar-CO potential at the vibrational
equilibrium position of CO, Values of the contours are given in
Table 6.
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TABLE 6. -- Values of the contours used in Fig. 4

- - —

Identifaction Contour Value (a.u.)

-A-A- -.0004
-.0002
.0000
.0010
.0100
.1000
1.0000
10.0000

m e WM MmO 0w >
g |

1
T O Mmoo O w
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270°

Fig, 5, == Contour plot of the wvibrational deriyative of the Ar<CO
' potential at the equilibrium position of CO. Values of the contours
are given in table 7.



TABLE 7. -- Values of the contours used in Fig. 5

Identifaction Contour Value (a.u.)
A-A-A-A -1.0000
B-B-B-B -.1000
c-C-C-¢C -.0100
D-D-D-D -.0001
E-E-E-E .0000
F-F-F-F .0010
G-G-G-G .0100
H-H-H-H .1000
I -I-1-1 1.0000
J-J-J-J 10.0000
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Between the nuclei there is a deep well region as should be expected
since in this expansion the vibrational derivative should approach a
negative infinity at the nuclei from the inside and a positive infinity
from the outside which also causes the cliff region,

The contours of Table ‘8 -were-used in plotting the vibra-

tional curvature,

2
9 e
T—E‘V(r,G,R) R=R (2-58)
oR e
of the Ar-CO potential shown in Fig. 6. It has the same qualitative
behavior as the vibrational derivative in Fig. 5 but is somewhat

smoother.



1507

210%

‘Fig. 6. -- Contour plot of the vibrational curvature of the Ar-CO

potential at the equilibrium position of CO.
are given in Table 8,

Values of the contours -
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TABLE 8. -- Values of the contours used in Fig. 6

34

Identifactio

R

G H I 6 m m o 0O w P
S |

S - I 60 m m Yo 0O w
]

O H D OOm Mmoo 0O w
LI |

G = T & ™M m g 0O w o>

Contour Value (a.u.)

-.1000
-.0100
-.0010
-.0001
.0000
.0010
.0100
.1000
1.0000
10.0000




ITI. Ar-CO V-T-R ENERGY TRANSFER

In the first section of this chapter the theory of molecular
collisions in the Infinite Order Sudden (IOS) approximation is described.
In section B we describe the calculation of V-T-R (Vibrational-
Translational-Rotational) energy transfer, total cross sections, and
vibrational relaxation rates, treating the rotations in the IOS approxi-
mation and using close-coupling for the vibrations. These calculations
use the Ar-CO potential previously described in chapter II. Then our
calculated vibrational relaxation rates will be compared with experiment

in section C.

A. Theory
The formal theory of the Infinite Order Sudden (IOS)

approximation has been derived using both space-fixed [8] and body-
fixed [10] coordinates. Both approaches are enlightening and give very
valuable insights into the validity range of the approximation. In this
section we present a derivation of the IOS approximation which is
equivalent to that given by Secrest [11] but is more straightforward and
clearly shows its relation to the semi-classical sudden [36]
approximation. After separation of the center of mass motion, the
Hamiltonian [using either the space-fixed (primed) axes or body-fixed
(unprimed) axes shown in Fig. 7] for an atom A interacting with a

I-state diatomic molecule BC can be written in the form,

2 o5 5% L2
Hedeyp ™ eps + H_.+ V(z,0,R), (3-1)
=~ % 72u 2 2 ~BC
oT 2ur

where L and u are, respectively, the angular momentum operator [37] and

reduced mass,

Ry ch/(mA * ch)’ (o)

35



c. of m. of system

Fig. 7. -- Center-of-mass coordinates used herein for A + BC

collisions. The prlmed axes. are the space-~fixed. coordlnates{,

the unprlmed axes are the bodwaixed coordinates,

36
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of A relative to BC and V(r,6,R) is the Born-Oppenheimer intermolecular

potential. The internal Hamiltonian H, . in Eq. (3-1) governs the

BC
nuclear motion of the diatomic molecule BC,
2
2 J
- B -2 9 .29 “R
Mo m-® mE et 3 * V'™, LS
BC 21, ~R
BC
where Hpe is the reduced mass,
Mpo = My mC/(mB + mc), (3-4)

QR is the angular momentum operator [38] of the diatomic molecule, and

VBc
mation the following replacements of operators by constants are made

[39],

is the Born-Oppenheimer interatomic potential. In the IOS approxi-

1?2 +82 aa + 1, (3-5)
in Eq. (3-1) and
72 >127G + 1, (3-6)
in Eq. (3-3) to give,
2 2 2 2
i . &15 £° Lk + 1) PR N N
e r e 2 PR v (r,0,R)-— R =R
2u ) 2ur2 PITH oR R
hz_'-(:T + 1) A3 A3
v =L 2l s Vo R V) (2,R50) = E Yl k;6) (3-7)

ZUBCR
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Where the notation on the wavefunction»\,bi‘)J (r,R;6) is used to indicate
that it now has only a parametric dependence upon the angle 6. The

numbers A and j in Eq. (3-7) are arbitrary constants. The wavefunction
wtj (r,R;6) can be expanded in a complete set of vibrational wavefunc-

tions X;v,,CRI

AJ e -1 v P
7 (x,R;0) —Z’r gy-- (3003, TR) (3-8)
Vv
where
2
o) ~2 4 2 3 J(J+1) v _
o mE m? 7+ VR | Xy BRY= o, X35 R)  (3-9)
BC 2up.R

and e}b are the rotation-vibration energy levels. Substitution of Eq.

(3-8) into Eq. (3-7), multiplication by SE Xib,CR) on the left and

integration over R gives the following set of second order coupled

differential equations,

2
_d—2-+k3v Mz“‘—l)-g,(re)—z U.. (x,8) g, (X;0)  (3-10)
dr J T Py
v
where
2 2u
- = == |E-e— 3-11
k§ =3 [ Jv] (3-11)
and
Vv 2U
V) 2 vV
Q

These equations are solved subject to the boundary conditions,

g:» (0;8) =0 (3-13)
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and

[i(kfvr” A?“)] } (3-14)

These are not the usual IOS solutions [10] but the usual
scattering solutions can be obtained by projection. The body-fixed

solutions are
Jisw~ i i . T .
Gjlﬂ,v,(r) =370 | g)- (r30) | j @ exp [1 Z @+i-2) (3-15)
where
30> = Y50 () (3-16)

and Yjﬂ(ﬁ) is a spherical harmonic with angles R = (8,9 in the body-
fixed system. That these are indeed the solutions of the usual IOS
scattering equations can be shown by multiplying {j Q7| on the left and
|j§2>exp[%;-<J—j + v] on the right of Eq. (3-10) to give

2 ;
l:i._ il A(A+1)] T o

dr2 v r2 v
=Y G 0,88 (0] 32D exp [AT 0+ 5 -], (3-17)
\)‘)

Then inserting the completeness relation [40],

. A,

1=3 3 [§Ta=hia ] (3-18)
o

on the right hand side of Eq. (3-17) gives the usual IOS scattering
equations [10]
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2 2
2008, -200] e

er jVv r2 itV

o . -~ \) o« A, -~ JjQ\)

- Z E(;Q IU\)" (r,0)] j°°0 >Gj,,9,v,, (3-19)
j” \)))

in the body-fixed formulation, where we have used [41]
<G |uy.. (x,0)] 577077

=8 ,,<j'9'|U3,,(r,9) l37°0°> (3-20)

QQ
. e : y Jjfv .

in obtaining this result. The solutions Gj'Q'v'(r) are subject to the
boundary conditions,

S ey & 0 (3-21)

Gj AQ’\)J

and

GJJQV

J.,Q,v,(r);-:kj;\l)/,z {a N exp[—i(kjvvr—(J+j) -g-)]

33700 Tvv

- 2 Graveli,-a,v) exp[i(ki-v,r % Qfgl)]} (3-22)

where SJ is the scattering matrix. Multiplication of Egs. (3-13) and

~

(3-14) by <j 27| and exp %;—(J+j-l)|j9:>on the left and right, respec-

tively, gives

G‘J?j,"" ) =0 (3-23)

and
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Ggiggv'(r):::T'kgtéz{djj’snﬂ'svv' exp[-i(kgv T ££%}l£ﬂ
0T I G s @1595 e|i (g, - L300

which proves that these are the usual I0S scattering solutions. Also
from the comparison of Eq. (3-23) with Eq. (3-22) one obtains an

expression for the scattering matrix SJ,
J - AA A . . T)\ . A, J-A-."*'.
STV i,-av,) =GRIs)@ )i > 0w T (3-29)

The space-fixed IOS solutions [10] can also be constructed by projec-
tion [39]

Jjv o < 0l M g 5w o
Gj oy () = <JMJl|gv, (r;0) |[IMj 27> (3-26)

where the brackets imply integration with

{IMjL| = t Z C(j&JI;m. mm) Y (ﬁ’) Y, ) (3-27)

m
=- =- %
J j m, = L

with angles RE(07,0%) and f’=(6;,¢;) in the space-fixed system. That
these are the usual IOS space-fixed solutions is easily proved as before

giving the 5J matrix as,
P N - .)\ « An A
sT (57 v |50v) = <aMje]sI” ) | aMj“e> (3-28)

 Using any physically reasonable choice for j and A which are
independent of the total angular momentum J, the J sum in the scattering
amplitude formula can be done analytically to give simplified expressions
for the scattering amplitude and differential cross sections. In the

body-fixed formulation the scattering amplitude is [10]
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£(3 m v ¢ 3w 0|8 = Zzz;c i 1)’“ * (2041) w2

[(21 +1)k; K - = 12 gl V7| jm, W)
C(Ii~e7;07,-0%, ) C(Jj ’l';mj " Tjlly -, -] (3-29)
Y g r/
2«‘,11(1.“1)".1
173

where the C(Jj'l-nﬁ -nﬁ “ﬁ'nﬁ') are the Clebsch-Gordan coefficients[42]
and £~ (6 ,¢ ) are the angles assoc1ated with the space-fixed coordi-

nate system. The tran51t10n‘matr1x'r ~in Eq. (3-30) is defined as,

. - -~ - S J - g Ped -
7V | j-av) = S u835 80, g - S GRV]3-av) (3-30)

- . .« A, JT.X - ¥ J—)\.j""j
= 6\)\),53.3.,69,’_9 7R lsw,(e)|39>( i iy

Substitution of Eq. (3-30) into the scattering amplitude Eq.(3-29) and
using the properties [43] of the Clebsch-Gordan coefficients the sum

over the total angular momentum J can be done analytically to give,

- o M 1
- . > - 0 A . a2 (—1)J+J 2 i3
£(j mj v +ij\)|r ) Yy ]1/2 2(22 +1) P ,(cos 8~ )
jviTv?
. J 2, -A 8
IGW,GJ-J-» A IS '(GJIJ Sy > (-1) ]} mm, - (3-31)

- (-1)3'+j +1<jmj|fj>‘(v‘+v| ?';e)lj’mj)

where the central field scattering amplitude (which parametrically de-

pends upon the angle 6) is
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eI v |£750) = 1

o 175 Z (227°+1)P, -(cos e;)Ta‘),(’e) (3-32)
1[ j V7 JV] L”

and

L7-A SJl

A gy =
T (8] = 8 = (1) - (8) (3-33)

are the elements of the transition matrix iix(e).
The degeneracy averaged differential cross section (scatter-

ing intensity) is [10]

k.
I(jvv[D) = 23+1 223 Y G- my v jm v |27 )I
IAY

m, m,.
J J
N

k
- grer kJ Z'(Jm 1692 (vren]|£730) |57 m, s 1° (3-34)
3
If ‘we also assume that j and A are independent of j~ we can
sum the degeneracy averaged differential cross section over the final ro-

tational states using the completeness relation [40]

_, 1 Z 2 1img <G, ] (3-35)
J mjf
to give
I(V*jv|f) = (23+1):E:<J IIE:CZR +1)P .(cos © )TJX;(e)lZ'JHB>
JV L
‘ (3-36)

This can be further simplified by use of the spherical harmonic addition

theorem [44],

: 1/2
2j+1 e * g
() 0.0 PIANCIN AR (3-37)

j
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[where 6 is the angle between the vectors ?1 and 92 defined by the angles

(61,¢1) and (82,¢2), respectively, (for the present case 61 = 62 and

(bl = ¢2 and hence 6 = 0)] giving

IV <jv|®) = —f IE (22~ +1)P, ~(cos © )TJ}‘,(e)]2 sin6d6 (3-38)

8kjv G &

where we have used [45]

L 1/2
Y,((0,0) = (23+1) (3-39)

4T
in deriving Eq. (3-38). The following equations and Eq. (3-38) are in-
dependent of j if j and A are taken to be independent of j.
The differential cross section in Eq. (3-38) can be written
as an average over the central field differential cross section which

also parametrically depends upon the angle 6,

™
IV «jv[f) = %f I(v'+jv|f7;8)sine de (=40
' 0

with. the central field differential cross section defined as,

v +5v|E:0) = zk—- IZ(zz +1)P, -(cos er)Tiﬁ,(e)]z_ (3-41)

jV

The total cross section can also be written as an average over the

central field total cross sections as,

T
g(vi<jv) = %f o(v'<3jv;0) sine db (3-42)
0
where
2T T
o(v <+ 3jv;0) =/ f IV «jv|£~7;0) sinG; dG; dd); (3-43)

0 0
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with substitution of Eq. (3-41) into Eq. (3-43) and using the
orthogonality [46] of the Legendre polynomials gives the usual central

field expression for the total cross section,

v+ §v;0) = — 2(22'+1)|T3)i:,(9)|2. (3-44)
jv &7

As seen from the simplified expressions given above a physically

reasonable choice of A is
A= 07, (3-45)

Also since j mainly affects the energy levels in Eq. (3-10) a physically

reasonable choice for j is
T=0+3iMW2 (3-46)

but for molecules with a small rotational constant the §jk(6) matrix will
almost be independent of j and we can choose j as a constant independent
of j and j~.

After obtaining the total cross sections o(v” <« jv) the vi-
brational relaxation rate constants kv<+vCT)are evaluated using [47],

ks

8 /2 o o v
kwﬂ,CF):(“_sfS T oy [0t e swre 8% (3-47)

where pj(T) is the probability of being in the j'th rotational state at
a temperature T, E is the incident relative kinetic energy and kB is
Boltzmann constant, From the detailed balance relation [48],

K ey (T) = © i k.« (T) (3-48)

the corresponding excitation rates can then be obtained.
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B. Calculations

There have been several methods proposed for numerical
solution of the coupled scattering equations. The two most promising
methods known are the Sams and Kouri [17] integral equations method,
and the Gordon [18] piecewise analytic function method. All of the
close-coupling calculations reported herein have used a combination of
both methods in order to utilize the advantages of each.

It was found that for large values of the angular momentum
(A = 27>200) and small kinetic energies [E <25,000°K (relative to the
ground state vibrational line of CO)] that the Distorted Wave [49]
approximation correctly predicted the elements of the S-matrix, sjk(e),
to within 5%. We therefore used it for the scattering calculations in
this range. Close-coupling was used for all values of the angular
momentum at high energies (E=25,000°K) and also for all of the energies

when the angular momentum was small (A =27<200).

i. Integral Equations

The Sams and Kouri [17] integral equations method will be
presented for the single channel case to keep the notation simple.
Generalization to the multi-channel problem is straightforward.

The single channel scattering solution gz(r), where

2

oA g ) = U gy () (3-49)

dr2 r

is subject to the usual scattering boundary conditions,
gz(O) =0 (3-50)

and

s & i do o
g, (1) — e 13 _gh i) (3-51)
T->00

L . : :
where S is the scattering matrix,
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gh - 2Ny (3-52)

and the n, are the phase shifts. The solution gl(r) of Eq. (3-49) can
then be written as a sum of a homogeneous gz(r), and a particular gg(r)

solution,
h
g, () = go(r) + gh(x) (3-53)

where the homogeneous solution satisfies,

2 )
4, 2 . gh(r) = 0 (3-54)
d 2 i 2 2

X T

and the particular solution is any nontrivial solution of Eq. (3-49).
The homogeneous solution can be written in terms of the Riccatti-Bessel
function fz(r) and the Riccatti-Hankel [30] function of the first kind
hél)(r) as,

gi(r) = ¢ f ) + Czﬁél)(kr) (3-55)

where the constants C1 and C2 are determined from the boundary conditions
on gz(r). The particular solution of Eq. (3-49) can be obtained using
Green's functions [50]or equivalently by the method of variation of

parameters [50], Using the method of variation of parameters gives,

g 5,00 B0 ) - 5,007 ALY )
go(r) =

(3-56)
0 H[ag” k), 3, o))

x U(r”) gﬁ(r') dr”
for the particular solution, where W is the Wronskian,

ipP an, 5 00) = 2P ang s, o - 3,00R w0 (3-57)
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which can be easily evaluated to give,

w[§2 kr), ALY (kr)] w ik, (3-58)

Since-%gz (r) is also a particular solution of Eq. (3-49) the solution

gz(r) can be written as,
g, = @ + 1,00 1Py vE) g e
% 3 % ) &y
0
1 -~ r A - -~ -~ -~
- BV (e )f $,0x7) UG gy(x7) dr” . (3-59)
0
The boundary condition at r =0, Eq. (3-50), then gives
g =10, (3-60)

Since the solution is zero at r =0, the asymptotic boundary condition

simply scales the solution; hence,

2y wd )+ 5,00 A ey 0EF) 5 ()

gy I Iy ) )

0
B ﬁél)(kr)frj‘z(kr') Ul Ez(r/) dr (3-61)
0
where,
£,(r) = C g, (2. (3-62)

A formal expression for the constant C in Eq. (3-62) can be obtained by

using the asymptotic boundary condition to give

C = Zi/ll +f [ﬁél) (kr™) + 2 ﬁ\g(kr')]U(r')Ez(r') dr’| (3-63)
0
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where we have used the asymptotic behavior of the Riccatti-Bessel [30],

3y (kr) —sin (kr - &) (3-64)
T >
and the Riccatti-Hankel [30],
; m
’ﬁjgl) 120 I e1<kr ) T) (3-65)

T >

functions. In practice the constant C is never determined using Eq.
(3-63), but by directly scaling the solution E&(r) at same large distance
to match the asymptotic boundary condition.

At first glance it looks as though Eq. (3-61) would have to
be solved iteratively since E&(r) is on both sides of the equation. How-

ever, replacing the integrals by a numerical quadrature gives,

i
—_— e ~ A~ (1) —

i
B, ﬁél) (kri) 2:132'(](1':') U(I‘J) -g-l(rj) WJ
J:

and one sees that the i'th term on the right-hand side cancels exactly

giving,

1

|
e PN 2 ~(1) -
golr;) = Jp(kr,) + J,(kr.) ~ hy (krj) U(rj) gl(rj) Wj (3-67)

-

i-1
e ﬁé” (ke )Y 3, 0)) UG By Wy
j=1
The weights wj in Eqs. (3-66) and (3-67) are the weights associated with
a particular quadrature (i.e., Trapezoidal [30], Simpson [30],etc.).
The integral equations method has the advantage that it requires little
computational time per step, however the method integrates an oscilla-

tory solution and hence requires a large number of steps. It also has a
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disadvantage for high %-values since it must calculate the Riccatti-
Bessel [30] and Riccatii-Hankel [30] functions which are usually
obtained by recursion. For coupled channels with the same £ values the
last disadvantage can be essentially eliminated if one numerically
integrates the homogeneous equation Eq. (3-54) to obtain the Riccatti-
Bessel [30] and Riccatti-Hankel [30] functions.

ii. Piecewise Analytic Functions

In Gordon's [18] piecewise analytic functions method

what one does is replace the effective potential

eff
U (@) = U@) + &;1—) (3-68)
T
by a reference potential U;(r) in a piecewise fashion
eff i
U,Q, () »> U,Q,(r) T, <r <ri+1 & (3-69)

The reference potential is chosen such that it accurately fits the
effective potential in the given region Ty ST <ri+1, and the solutions

e 5
gy

[——2 s u;(r)] gs(r) = 0 (3-70)

are known analytically. Then the scattering solution gz(r) is formed by
matching the reference solution and its derivative across the boundaries

of the regions

g, = gy () (3-71)
and
d i d i+1
T5@®| =5 g O] (3-72)
=T EP=T

i i
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The r, are determined by a perturbative procedure [18] resulting in
unequal step sizes which is a major advantage of the method as discussed
in iii. The method is simply generalized to the many channel case by

the diagonalizing of the matrix W whose elements are,

_ 12  2(2+1)
LY Sk e

: U, () (3-73)

in the region of interest and then fitting the eigenvalues with the
reference potential and hence obtaining the reference solutions gi and
then transforming back to get the scattering solution. This is a dis-
advantage since the diagonalization of a matrix is a time consuming

process.

iii. Joining of Both Methods

Since the Gordon piecewise linear program [18]can take large
step sizes when the potential is varying slowly (large r) it is very
efficient in that region. In the Sams and Kouri [17] method however, one
is limited by the De Broglie wavelength and not the smoothness of the
potential hence it is inefficient where the potential varies slowly.
However, when the potential is varying rapidly (small r) the Gordon
Program [18]requires a large number of steps and hence is less efficient
than the Sams and Kouri [17] procedure. This is why we chose to use the
Sams and Kouri [17] method at short distances and then switch over to
Gordon Program [18] at large histances. Using this procedure we were
able to solve the coupled scattering equations 5 times as fast as either
method alone.

For distances less than 14.0 a.u. the Sams and Kouri [17]
method was used with a step size of .005 a.u. which required about 3000
steps. For distances greater than 14.0 a.u. the Gordon Program [18]
was used with all of the tolerance parameters set to 1.0X 10-12 except
for TOLHI which was set at 5.0X 10-7. TOLHI governs the step size and
hence the accuracy. Using these parameters we were able to calculate
|S§v,|2 within a few percent when they had magnitudes as low as 10—11.
Since the Sams and Kouri [17] algorithm does not use the first deriva-

tive of the scattering solution whereas the Gordon Program does it was
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necessary to calculate the first derivative of the solution at the
switch over point 14.0 a.u. The first derivative could be propagated
along with the solution in the Sams and Kouri [17] procedure with little
additional computational effort. Also the derivative couldbe calculated

very accurately using the Sloan formula [51],

ﬁ%-E@(ri) = 5%—[9'§2(ri) - 16 Ei(ri_l) + 7 Ei(ri-z)] (3-74)
. %[8 gy (r; ) ('QCL;D‘ YR ) * k2>
i~1
+ —g-z(ri—l) (&(_g’-'-_]:_)_ + U(ri_z) + k2>]
I
i-2

where h is the step size. Since the derivative isneeded only at the
switchover point, we chose this latter procedure since it is slightly

faster numerically.

iv. Vibrational Wavefunctions

The vibrational wavefunctions x?b(R) [solutions of Eq. (3-9)
with the Simons-Parr-Finlan [52] interatomic potential V(R)] of CO were
obtained using the variational principle with the first 20 harmonic

oscillators as a basis set. The harmonic oscillators have their originat

[o]
R F (Rmax + Rmin)/z = 1.183 A (3-75)

where Rmin and Rmax are the inner and outer Rydberg-Klein-Reese [53]
(RKR) turning points for the 9th vibrational level of CO. The force
constant is chosen so that the eigenvalue of the 9th harmonic oscillator
is equal to the experimental energy of the 9th vibrational level of

CO. We obtained the first 10 vibrational energies accurate to within
.0004%. Since the intermolecular potential was expanded in a power
series about the equilibrium position Re, of CO it was necessary to

calculate the coupling constants.
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C?ws‘v =(PIR-RIPFVD m = 0,1,2 (3-76)

These constants were calculated using a 50 point Gauss-Hermite quadra-

ture and are accurate.to.at least 5 significant figures.

......

C. Results and Comparison with Experiment

Because the final rate constants involve averaging cross
sections calculated at many energies and each cross section involves
summing transition probabilities calculated at many values of the
angular momentum £°we will only give a few representative detailed
results here. In Fig. 8 a plot is made of the opacity function
[(22+1)|Sgl|2] (after averaging over the angle 6) verses the angular
momentum £ for the 0«1 transition at a relative incident energy
E/kB = 1,915 oK. Opacity plots are very interesting since the area
under the curve is proportional to the cross section and the impact
parameter (b=(2+1/2)/, wherek2=2uE/h2and E is the relative incident
energy) is a measure of the closeness of the collision, i.e., small
impact parameters imply a close collision. The maximum on the opacity
curve corresponds: to an impact parameter of 4.1 a.u. This indicates
that at this relative kinetic energy the main contribution is due to
the long range attractive part of the potential. The dependence upon
the angular momentum is quite smooth and this plot is typical for all
of the low energy scattering.

The opacity plot in Fig. 9 is at a relative-incident kinetic
energy E/kB of 20,915 °k for the 0«1 transition. The dependence upon
the angular momentum £ is very smooth. This plot is typical for all
scattering energies above 8,000 oK. The maximum occurs at an impact
parameter b of 1.1 a.u. which implies close collisions. The transition
probability is totally dominated by the repulsive wall of the potential.

In Figs. 10 and 11 we have made opacity plots for the 1<2
and 0«2 transitions respectively at a relative incident (v=2)E/kBof
17,869 OK. It is seen that these plots are very similiar to the 0<1
transition given in Fig. 9, but the transition probabilities are smaller
because the relative kinetic energy has decreased. The 0«2 transition

in Fig. 11 has a very small cross section and is down by a factor of 105
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when compared to the 0«1 transition. Also, the 0«2 transition has its
maximum at a smaller impact parameter (b=0,77) than the 1«2 transition
which implies that closer collisions are required for the 0«2
transition as would be expected.

In Figs. 12-15 plots are made of the total cross section
0(0«1;60) (which parametrically depends upon the angle 6) for the 0«1
transition at 4 different energies as a function of the angle 6. It is
seen that the angular dependence is quite smooth especially for the
higher energies. For the higher energies it is noticed that the plots
are all very similiar and that the maximum transition probability is
near 90° which clearly shows that the major contribution comes from
perpendicular collisions. Thus, the well-known simple models which
assume that vibrational transitions are predominately caused by
collinear collisions are simply not valid for this system. These
results are typical of all scattering energies. As the energy is
decreased the maximum shifts off 90O but never to a collinear config-
uration.

Since this angle dependence is somewhat surprising let us
consider why it occurs. In Figs. 16-18 the coefficients, Vm(r,e)

(m=0, 1 or 2), in the expansion of the potential

2
V(r,0,R) = Z Vm(r,e)(R-Re)m , (3-77)
m=0

in powers of the vibrational coordinate, have been plotted as a function
of the distance r for 3 different angles. It is seen that for 6=97.2°
the m=1 and m=2 contributions are negative. That makes this the most
favorable angle for vibrational transitions for the following reasons:
First, it decreases the slope and hence allows more penetration into
the barrier. Secondly, since the diagonal vibrational coupling matrix
element [Eq. (3-76)] is larger for the higher vibrational state, the
slope and magnitude of the diagonal potential matrix element [Eq.
(3-12)] is smaller for the upper vibrational state causing the classical
turning points to be closer together, giving more overlap and a greater
transition probability. These explanations can also be shown [54] to

be correct by using the distorted wave [49] approximation (which
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correctly but qualitatively gives the same results) and evaluating the
transition matrix elements using the saddle point method {55]. This
also shows that the transition probabilities are not only very sensitive
to the sign of the pgrturbing potentials CVm(r,B), m=1 or 2), through
their diagonal matrix elements, but also to the ratio of the slope of
the perturbing potential to its magnitude (IVﬁ(r,e)/Vm(r,e)l, m=1 or 2)
where the larger this ratio the larger the transition probability.

This ratio is also largest at 97.2°. Thus, we see why the vibrational
transition probabilities are very sensitive to the potential in this
region.

Plotted in Fig. 19 are the total angle averaged cross '
sections (for Av=1 transitions) versus the relative incident kinetic
energy. The cross sections increase more rapidly with v than one
would expect from simple harmonic models. The additional increase is
attributed to the closer spacing of the CO vibrational levels at
higher vibrational quanta. Even at the highest scattering energies
the cross sections have not reached a maximum and are well below the
gas kinetic cross section in magnitude,

In Fig. 20 a comparison is made of our calculated vibra-
tional relaxation rates.(?——-solid 1ine) with the experimental wvalues,
The dashed line through the ekperimental values is a fit to the
experiments using the Landau-Teller theory which predicts that
1n kvv’CT) vs, T-1/3 should be a straight 1line, It is clear from the
figure that our cross sections are considerably too small. This
discrepancy can be caused by one of two reasons or a combination of
both. First, in using the infinite order sudden approkimation for the
rotations we neglected the differences in the rotational energies, and
large rotational transitions could reduce the effective energy gap
between the vibrational channels; hence, larger transition-proba-
bilities would be expected, If this were the sole cause our relax-
ation rates would be better at low temperatures (since at higher
temperatures the larger j states are more highly populated and the
difference in rotational energies for the same Aj transition would be
larger causing a smaller effectiye vibrational energy gap) which is
opposite to what is observed in our calculated rates, Although we do

not believe this to be the case further calculations in which the
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vibrational energy gap has been reduced to test this possibility are
necessary. The second and we feel most likely reason for the discrep-
ancy could come from inaccuracies in the short range electron gas
potential. As mentioned earlier our transition probabilities are very
sensitive to the potential and self consistant field calculations are
currently being performed to test the short range electron gas poten-

tial and hence this hypothesis.
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IV. SUMMARY AND CONCLUSIONS

We have determined the angle, distance and vibration
dependence of the Ar-CO intermolecular potential using a modification
[3] of the electron gas model [1-4]., The long range behavior of the
potential was determined from accurate van der Waals coefficients which
were calculated from experimental refractive index data using the Pade”
approximant methods of Langhoff and Karplus [13]. These are presently
the most accurate van der Waals coefficients for the interactions of
Co.

We have obtained simplified expressions for the scattering
amplitude and differential cross section within the infinite order
sudden approximation. Then using the infinite order sudden approxi-
mation for the rotations in the Ar-CO system we solved the coupled
vibrational scattering equations using a combination of the Sams and
Kouri [17] algorithm (for short distances) and the Gordon [18] Airy
function expansion method (for large distances) at a number of energies.
and angular momentum values. Total cross sections were then calculated
at several energies in order to determine the vibrational relaxation
rates. It was found that our calculated rates are very sensitive
to the short’range potential and that they were much smaller that the
experimental values. Indicating that extreme care should be taken in
the classical turning point region, where a limited amount of config-
uration interaction or self consistant field calculations should be
performed and used to obtain an a-type parameter with which to scale
the electron gas exchange energy, which will also be a very useful
test of the accuracy of the potential.

In conclusion we beleive that this type of approach should
be very useful in determining interactions of systems similiar to
the Ar-CO system, i.e., systems in which the molecule has a small

rotational constant and the reduced mass is large.
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COMPUTATIONAL TESTS OF SOME SIMPLE
SOLUTIONS OF THE STRONG

COUPLING PROBLEM.
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Partial cross sections (opacity functions) for rotational transitions 1n atom—diatom coilisions are computed
in the infinite-order sudden (10S) approximation and compared with accurate close-coupling (CC)
calculations. Agreement is good in the dominant coupling (small total angular momentum J) region. Simple
methods for calculating integral inelastic cross sections are discussed, and it is found that accurate cross

sections can often be computed very simply, even when large

h 1.

s of ch

are coupled together, by

using IOS or first-order sudden (FOS) approximations for small J and CC or exponential Born (EBDW)

methods for large J.

L INTRODUCTION

A major problem in the quantum theory of molec-
ular scattering is that (for small total angular mc-
mentum J and any molecules except hydrides) the
collision causes large numbers of rotational staies
to be strongly coupled together. This gives rise to
a large set of coupled radial Schr&dinger equations
which must be solved simultaneously. Although
truly significant advances? have been made in
recent years in the accurate, close-coupled (CC)
numerical solution of these equations, tne CT com-
puiation of the large numbers of cross sections
needed in the descripticn of relaxation and reactive
processes is still exceedingly expensive. Hence,
there remains a real need for approximate methods
which give accurate results and vet ars computa-
tionally simple.

Most simple approximations (such as the ordi-
nary distorted wave approximation) fail miserably
in the dominant coupling (small J) region. Be-
sides the sudden approximations used herein, the
only other computationally simple method that we
know of that may be useful here is the statistical
approximation.® But it cannot be used unless one
knows from some other svurce how many channels
are strongly coupled together, * and it does not give
the phase oscillations ovserved in the figures pre-
sented in Sec. III. Hernce, it was not used in this

. work.

In this paper we report* calculaticns comparing
some sudden approximations with accurate CC re-
sults for several atom~-diatom rotationally inelas-
tic collisons using empirical intermolecular poten-
tials. In Sec. II the problem and methods used are
outlined; then, in Sec. III, results are presented
and comparisons made. We conclude in Sec. IV
that simple but adequate approximate solutions of
the rotationally inelastic scattering problem are
now known.
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II. THEORY AND CALCULATIONS

Since the approximations used in this paper have
all been discussed elsewhere, only a sketch of
their derivations is given.

The objective here is to solve the Schrodinger
equation for the collision of an atom A with a di-
atomic molecule BC. To get at the essential diffi-
culty of treating rotational states, we use the
rigid rotor model and formulation of Arthurs and
Dalgarno® with empirical intermoiecular poten-
tials U of the form

Utr’, 8)=V{r")+ Wir') Po(cosb), (1)

where the coordinates are those shown in Fig. 1
and the primes stand for cgs units. In reduced
units (r=7'/0, where ¢ is the point at which V is
zero), the coupled equations which must be solved
can be written in the form®

{1d%/dr*+E -V (r) 1- W) F|G(r)=0, (2)

where G={G,,(r)} is a column vector of radial chan-
nel wavefuncticns, F is a matrix of Percival-Sea-
ton®*'® coefficients, 1 is the unit matrix, and the

elements of E are
E = Ol k2 1,1, +1)/7%], 3)

where the 1, are relative orbital angular momenta.
In these reduced units the channel wavenumbers
k, and energies k% are given by

Ri=2u0?E/h? - Bj,(ju+1), (4)

where p is the atom —diatom reduced mass, E is
the total energy (in cgs units), and the j, are the
rotor angular momentum quantum numbers. The
rotationa! constant B of the diatomic molecule is
given in these units by

B=pd/Ipc = pa-ac #/itucR’ (5)

where R’ is the average BC internuclear distance,
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c.of m. of system

c.of m. of BC

FIG. 1. Center of mass coordinates used herein for A
+ BC collisions,

and ppc is the reduced mass of BC. The potentials
used herein are (in reduced units)

V=4D(r"% -7), 8)
and
W=4D(ay, r'? - a4 r™®), (7)

where D=2p:,_gsc0%¢//?. Here € is the (cgs) depth
of the intermolecular potential and a,, and ag are
asymmetry parameters.

For each value of the total angular momentum J,
one must solve the set of coupled equations (2)
subject {0 the boundary conditions

G. :\,“ k;. /2{6"' exﬂ_i(k‘r - %lgﬂ')‘l
- 8% expli k7 - 41,1)]} ®)

to obtain the elements S7; of the scattering matrix.
Once this is done the degeneracy-averaged inte-
gral cress sections needed can be written in the
form®

s Ut (n/ki)?o @T+1) @5 Gy G0y @

where the opacity functions (average transition
probabilities) & (jn, j,) are given by’ i
"’ln Joim
Olimia)= Bios 1) T I |bm=SLIA.
Lald=iyl Gp=lTeipyl
(10)

To compute “exact” cross sections, one trun-
cates the infinite set of coupled equations by re-
stricting the number of rotational states j, in-
cluded, solves the resulting finite set of equations
numerically using some CC method and then adds
additional rotor states j, (and their associated /)
and repeats the CC calculations until the desired
opacity functions converge to within some speci-
fied accuracy. The CC computations reported
here were performed using Gordon’s method! and
program.® The results are accurate but expen-
sive.

Many simple approximate solutions of (2), such
as the ordinary distorted-wave (DW) methods, often

TSIEN, PARKER, AND PACK

give ridiculous results for the systems considered
here. For example, the DW o(2-0) for the Ar
+TIF example in Sec. III is over ten times too
large, and the DW o(4-0) is identically zero. At
the very least, one must have a many-state, prob-
ability-conserving approximation. One such ap-
proximation which we have previously discussed®'!?

- is the strong coupling cr infinite-order sudden

(10S) approximation, appropriate for the small J
regions where the elements of WF dominate the
differences in the elements of E and strongly
couple the equations together. In the IOS ap-
proximation one sets k,=k and [,=1 for all the
strongly coupled channels. Then, the resulting
equations can be solved exactly: L.et G=Ug, where
U is the r-independent unitary transformation
which makes U'FU= A diagonal. Then, the ele-
ments of g satisfy uncoupled equations and the re-
sulting S matrix is®'!°

§’ = UBU" = exp(2iUnU"), (11)
where

B, =0, exp (2in}°) , (12)
and

(M = O a” (13)

The WKB approximation for the phase shifts 7} is
o= [T{[ BP0+ /P -V - WA E —k}ar
'n
~kr,+3U+3)m, (14)

where 7, is the turning point and A, an element of
the diagonal matrix A. Thus, an N state 10S cal-
culation at a given J simply requires the diagonali-
zation of one NXN matrix F and evaluation of N
WKB phase shifts. In the 10S computations re-
ported here, the Jacobi method was used for the
diagonalization and a Simpson’s rule numerical
integration with increasing step size was used for
the phase shifts.

As we have noted previously, !° if one expands
(14) in powers of A, and keeps only the terms
through © (A,), the resulting scattering matrix,

§7 = exp[2i(n‘® 147V F)], (15)

is precisely that of the familiar semiclassical
first-order sudden (FOS) approximation.!' Here

7= [T{[# -G+ 37/ - V]2 _k}ar
o
—krg+3l+3)7, (is)

and

m__1(° W)
n= ZS'o (iz_u+_i|32/z._v_m] dr. (17)

Thus, N state FOS calculations require evaluation
of just two phase integrals and expansion of the
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TABLE I. Parameters used herein. p,_pc is the reduced mass of A+ BC in atomic mass units; ¢ is the size param-
eter of the 12-6 potential in angstroms; a;; and ag are the repulsive and attractive asymmetry paramelers, respectively;
€/kp is the depth of the potential well in °K; B’ is the rotational constant of the diatomic molecule in cm™; E/kpg is the
total relative energy available in °K; D is the reduced well depth; B the reduced rotational constant; and k*(j=0) the re-
duced total energy.

System  py_pcamu) ok} ap ag ¢/kpK) Blem) E/kgCK) D B k¥j=0) Refs.
Ar-TIF 33.89 4.62 0.50 0.30 132.5 0.22246 1344 3947.8 9.541 40,071 13,a
Ar—N, 16.47 3.50 0.50 0.13 119.5 2.010 300 994.2 24.06 2495.9 16

Ar—-F, 19.48 3.550 0.200 0.200 115.9 0.862 300 1173. 12.55 3036 18,b
Ar—Cl, 25.55 3.831 0.200 0.200 190.7 0.2438 300 2948, 5.423 4638 18,b
Ar—Br, 31.96  3.837 0.200 0.200  249.8  0.08091 300  4846.  2.258 5820 18,b
Ar-l, 34.52 4.146 0.200 0.220 256.9 0.03736 300 6285. 1.315 17339 18,b

®R. K. Ritchie and H. Lew, Can. J. Phys. 43, 1701 (1965).

%G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950), 2nd edmon.

exponential of 2 matrix. In this work direct ex-
pansion of (15) was found to require as many as 30
terms for convergence. To decrease this number
and avoid roundoff error, a Chebyshev pclynomial
contraction of the expansion was made.

For the moderate- and weak-coupling region
(large J) the sudden approximations are not ac-
curate. However, the number of channels (N) re-
quired in this region is quite small, so that one
can often afford to do the CC calculations. Also,
one could use the exponential distorted wave ap-
proximations (EDW) discussed by Levine.'* These
start with Eq. (2) and treat WF as the perturbation
in an exponential perturbation method to get a
unitary S matrix. If one uses the Born approxi-

culations®® are easily performed. If one uses a
distorted-wave approximation as zeroth order,

the resulting EDWD approximation gives betier
results but is much more expensive computational-
ly, except in those cases in which one car evaluate
the necessary integrals using asymptotic meth-
ods. 10,14

The calculations reported herein were carried
out using the Brigham Young University IBM
360/50 and 7630 STRETCH computers. For
typical many-state calculations the relative running
times of the FOS :10S: CC programs were 1:2:90.

IIl. RESULTS

In this section numerical results for some model
problems are presented.

mation as zeroth order, the resulting EBDW cal-

TABLE II. Convergence of partial cross sections as the number of channels (N) is increased. The numbers are the
values cf (2J+1) ®;(2—0) for Ar+TIF calculated in the infinite order sudden (I0S) and close-coupling (CC) approxima-
tions. J is the total angular momentum and jp,, the largest rotor j kept.

Jmaz 4 6 8 10 12 14 16 18

J N 9 16 25 36 49 64 81 100 Method

0 0.433 0.209 0.182 0. 040 0.085 0.078 0.078 0.078 108

0.428 0.217 0.199 0.045 0.090 0.086 0.085 0.085 CcC

20 +16.1 8.78 7.18 1.65 3.43 3.11 3.11 108

16.0 9.11 7.49 1.81 3.55 CcC

40 22.5 17.9 12.0 2.88 5.54 5.31 5.25 108

23.0 18.4 13.6 3.40 6.10 CC

80 0.28 26.4 3.37 0.89 1.60 1.42 1.42 108

1.13 26.6€ 5.30 0.91 1.91 cC

120 102.5 51.8 26.0 34.1 33.5 33.3 108

99.7 48.1 23.0 31.0 30.4 ce

160 33.7 21.5 25.6 25.5 25.5 25.5 108

14.2 1.84 3.40 3.17 3.16 { o] oy

200 2.09 2.10 2.10 2.10 108

125.5 122.8 122.7 cC
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The intermociecular potential used in the calcu-
lations on Ar-TIF rotationally inelastic scattering
is that of Balint-Kurti and Levine, !* who studied
the large J (weak and moderate coupling) opacity

functions for this system.

This potential (its

parameters are listed in Table I) treats TIF as a

“homonuclear” diatomic and is thus a crude'®

model for this particular system, but its behavior

FIG. 2. Behavior of the
dimensionless partial cross
sections [(2J+1) times the
opacity function @;] as a
function of the total angular
momentum J for the j=0 to
j=2 trausition in an Ar-TIF
collision. At the top of the
figure is the number of
channels N required to ob-
tain convergence. Solid
line, IOS results; dashed
line, CC results.

is typical of an atom—heavy homonuclear diator

collision.

" In this work we calculated cross sections for the

0- 2 and 0~ 4 rotationally inelastic collisions using

the CC, 10S, and FOS approximations. Particular

emphasis was placed on determining the dependence

of the opacity functions on the number of channels
(N) included and on the total angular momentum J.
The rotational states withj=0,2, ..., jna.. Were

2
(=]
T

lza#n)pdtz.O)
@
Q
1

Ty

AR T el e ¢

—
-

——— v
- - ————

100

200

S00

FIG. 3. Comparison of
the IO0S (solid line), FOS
(dotted line), CC (dashod
line), and EBDW (dot-dash
line) dimensionless partial
cross sections (2J+1) @,
(2+0) for Ar4 TIF.
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= T

FIG. 4. Dimensionless

4 partial cross sections (2J
+1)®; (4—0) for Ar+TIF.
The notation is the same as
in Fig. 3.

included and j,,, Was increased until the desired
opacity functions converged to a value stable to
within about 5%. For a given ja, and J =j g, the
total number of channels (j,! combinations) is

ipax
Ne & (G41)=H(nu+2P.

320, 20000

(18)

For very small J (J<j,,,), N is less than this de-
creasing to N=3(jp.z+2) at J=0.

The convergence of the opacity functions as N is
increased was found to be very similar for the

FOS, 1I0S, and CC methods and is illustrated by
Table I in which the I0S and CC values for (2
+1)®,(2-0) are given for a few J values as a func-
tion of N. One sees immediately that in the small
J (J<180 in this case) regicn, convergence is
neither rapid nor monotonic, and as many as 64
channels are required to obtain satisfactory con-
vergence.

In Fig. 2 the converged (2J +1)@,(2~ 0) obtained
from the I0S and CC methods are plotted vs J for
all J to allow easy comparison. At the top of the

80 36 [ 25
60} -
5
Vot 1
~N
Q’QOL -
¥
o
o~ L
20 B
i
s ) ;
Olw===ooC === o o

FIG. 5. Dimensionless
partial cross sections 2J
+1)®; (2 +—0) for Ar - N,.
The notation is the same as
1 in Fig. 3.

o] 20

80
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TABLE O. Rotationally inelastic integral cross sec-
tions o(j, —j;) for Ar+TIF collisions at total energy E/
kp=1344°K. The units are A% Also listed are the per-
cent deviations from the accurate CC value. In the mixed
methods the change from small J method to large J meth~
od was made at J=210.

Method o@-0) " % ol4=—0) %
cC 58.9 eoe 16.4 soe
108 69.6 18.4 29.1 77.4
FOS 69.3 17.9 28.3 %2.6
I08+CC 59.0 0.3 16.5 0.6
FOS+CC 59.0 0.3 15.5 -5.5
I0S + EBDW 59.5 1.2 18.6 13.4
FOS + EBDW 59.5 1.2 17.5 6.7

figure is listed the N required for convergence.
One sees that the IOS results are a very good
approximation to the exact CC results for small

J. As J increases the I0S results slowly get out
of phase and become, as one might expect, con-
sgiderably too large in the large J, weak-coupling
region. T may be noted that the minimum near

J =200 is due to cancellation between the short

and long range potentials. Scattering for J >200

is dominated by the long range tail of the potential,
and scattering for J <200 is dominated by the short
range repulsive potential. In the small J region
competition between many strongly coupled chan-
nels markedly damps the probability of a transition
to any one channel.

In Fig. 3 the FOS results are compared with the
1I0S results for this same 0~ 2 transition; they be-
come identical to the IOS resulis at larger J. At
small J the FOS approximation gets out of phase
but has about the right magnitude. Since the inte-

gral inelastic cross section o(2 -0) is proportion-
ai to the area under the curve, it is clear that the
I0S and FOS cross sections are nearly equal. Also
plotted for large J on Fig. 3 are the CC results
and the exponential Born (EBDW) results of
Balint-Kurti and Levine.'* The EBDW approxima-
tion is better than the sudden approximations for
large J but is known to fail completely for small

J in this case.™

In Fig. 4 the converged FOS, I0S, EBDW, and
CC values of (27 +1)®, are plotted for the 0-4
transition. The behavior is similar.

The availability of different simple approxima-
tions valid in different J regions immediately
suggests calculation of integral inelastic cross
sections using one approximation for small J and
another for large J. Accordingly, in Table III we
present the integral inelastic cross sections cal-
culated in the CC, I0S, FOS approximations and
several combinations in which one approximation
is used for J <210 and another for J 2210. Several
of the simple methods are seen to give integral
cross sections accurate to within a few percent.

It is also worth noting that because of the damp-
ing and associated small contribution of the domi-
nant coupling {smal!l J) region, the integral cross
sections converge much more rapidly with .V than
did the small J opacity functions (partial cross
sections). This is illustrated by Table IV, which
gives the integral cross sections as functions of N.

B. Ar+N,
Calculations of the 0—-2 and 0-4 crcss secticns

were also carried out for room temperature Ar-
N, collisions using the potential parameters of

-

60 - T «

°

L 40
<

aﬁ

*

o 20

FIG. 6. Dimensionless
1 partial cross sections (2J
+1)®; (¢ —0) for Ar+ N,.
The notation is that of I'ig.
=1 3.

80 120
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TABLE IV. Convergence of integral inelastic cross sections o(j,~—j,;) for Ar+ TIF as the
number of channels (V) is increased. The units are A%,

N
Cross section Method 9 16 25 36 49 64
cC 65.2 62.8 §7.3 58.8 58.9 &
o2+0) 108 74.7 73.3 69.7 69.4 69.6 69.6
FOS 76.6 73.7 68.7 69.9 69.3 69.4
CcC 33.7 24.1 20.2 16.3 16.4 LA
ol4—0) 108 45.2 38.2 32.2 28.3 29.1 29.0
FOS 43.0 39.5 29,7 28.6 28.3 28,2
Pattengill, LaBudde, Bernstein, and Curtiss. *® one approximatiorn for small J and another for large
The resulting I0S, FOS, and CC opacity functions J. However, the IOS and FOS integral cross sec-
are compared in Figs. 5 and 6. From the number tions are still accurate enough to be useful.
ol cha.nn.els REQUIEAY 0¥ conve.rgence [h:sted it e The existence and extent of the dominant coupling
top of Fig. 5] one sees that this system is not so R i
. region in this problem depends very strongly on the
strongly coupled as the previous one. However, i :
i repulsive asymmetry parameter a,, wnose value is
the depression of the partial cross sections for 5 . ot : 2
J = 40 is a strong coupling effect. still uncertain. It is interesting to note that if a,,
were decreased from 0.5 to an earlier estimate'’
& th fi i-

Althouzh the sudden approximations are not quite o 0,894 w.ith the _o e‘.- Darkyisters fleac, the dem

$gsi A % ¢ i 5 nant coupling region disappears, and no more than
as well justified in this system as in the previous :

< : : 16 channels are required for convergence at any J.
one, they still work quite well in the small J (J : < + i

P - This is illustrated in Fig. 7, where the FOS val-

=68 here) region. It is interesting that for J <35, ues of (27 +1)®,(2, 0) obtained with the two values
the FOS results for the 0— 2 transition are bstter abd - are som Ja ré d .
than those of the I0S approximation, which gives 12 PRRES
too much dominant coupling. C. Ar+F,, Q,, Bry,and I,

The large J region where the sudden approxima- To check further the observation that in the two
tions are poor contributes only a very small frac- previous examples the well-known FOS approxima-
tion of the integral cross sections (given in Tabie tion gives reasonable results for smail J, even in
V) for this system, and nothing is gained by using dominant coupling regions, and to see how the

80

(ZJOHDJ(2<—0)'

FIG. 7. Effect of the

1 size of the repulsive asym-
metry parameter a,; on the
FOS dimensionless partial
cross sections (2J+1)®?,
(2=—0) for Ar+N,. The

4 solid line is with a;,=0.35;
the dotted line is with a;,
o =0.375.
|
20 40 60 80 100 120
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TABLE V. Rotationally inelastic integral cross sec-
tions o (j;—j,) for Ar+N, collisions at total energy E/kg
=300°K. The units are A%, Also listed are the percent
deviations from the accurate CC value.

Method o2-0) % o(4~—0) %
cC 22,6 (1L 22.4 soe
108 22,3 -0.9 18.8 -16
FOS 21,1 -6.2 16.7 -25

number N of coupled channels required increases
with increasing reduced mass, we calculated the
FOS and IOS values of some inelastic cross sec-
tions on a series of model problems intended to
represent scattering of Ar atoms by F,, Cl,, Br,,
and I,, respectively. The parameters of the
spherical part of each intermolecular potential
(see Table I) were obtained using the parameters
and combining rules of Hirschfelder, Curtiss, and
Bird!® and should be fairly reasonable estimates;
however, the asymmetry parameters were arbi-
trarily kept fixed at 0. 20.

The resulting integral inelastic cross sections
(in units of A2) are presented in Table VI along
with the maximum number of channels required
to obtain convergence of all partial cross sections
to within 5%. Again, the FOS results are good
approximations to the I0S results regardless of
the number of channels involved.

IV. DISCUSSION AND CONCLUSIONS

From the results of this paper, we conclude
that the rotationally inelastic scattering problem
is much less difficult than the large number of
coupled rotational states would make it appear to

be. This is due to the fact that the region where
large numbers of states are strongly coupled and
competing makes a small contribution to the in-
elastic cross sections and can hence be safely
treated with rather simple approximations. In
particular, the IOS and the well-known FOS ap-
‘proximation provide computationally easy ways

of obtaining rather good small J partial cross
sections for rotationally inelastic collisions of heavy
diatomic molecules. For systems in which the
large J (weak-coupling long-range) region gives

a large contribution to the integral cross section,
one can calculate reliable cross sections econom-
ically using a sudden approximation at small J and
a2 CC or EBDW method in the large J region where
only a few channels are needed.

The major reason for our present interest in
the FOS approximation, since the IOS method is
already computationally very simple, is that the
FOS method is easily applied to potentials more

TABLE VI. Integral inelastic cross sections o (j,—j;)
(in A for room temperature collisions of Ar with F,.
Cl,, Bry, and L.

System Approx. N o(2=—0) agl4=—0)
Ar+F, FOS 25 55.72 17.23
Ar+F, 108 51.29 17.03
Ar+Cl, FOS 36 55.15 36.38
Ar+Cl, 108 55.72 36.39
Ar+Br, FOS 36 44.38 35.26
Ar+Br, 108 46.40 34.15
Ar+l, FOS 64 51.91 34,14
Ar+1, 108 51.44 31.93

general than that used here. For example, the
FOS approximation can be applied to potentials of
the form

U@',8)= i U,(r') P,(cos) (19)
w0

by direct generalization of Eqs. (15) and (i7). As
formulated herein, the 10S approximation cannot
be used for such a potential unless U, (r")x U,(r’)
for all », m >0. However, as this work was being
completed, it was discovered'® that by using Lody-
fixed coordinate axes a drastic simplification can
always be achieved via an 1I0S approximation, re-
gardless of the form of the potential. Further-
more, this approach will also produce a marked
increase in the computation speed of both the
sudden approximations. Research along this line
will be reported in a subsequent paper.*®
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s

Ap dure for ex

g electron gas calculations to molecule —molecule interactions is presented which allows rapid

determination of the dependence of intermolecular potentials on all vibration and rotation coordinates. Results for [1F—HI*

agree well with accurate SCF calculations.

1. Introduction

There is currently much intercst in the calculation
of intermolecular potentials between closed shell sys-
tems using tl.. eiectron gas methods developed by Gay-
daenko and Nikulin {1], and Gordon and Kim [2],
and modified by Rae [3], and Cohen and Pack [4].
These methods have been used successfully to calcu-
late the interaction energies of many pairs [1--5] of
closed shell atoms or atomic ions. The method has
also been applied to arom—molecule interactions by
Kim [6] and by Green and Gordon. whose computer
program is available through QCPE [7]. They have
used it to determine the angle and distance dependence
of the Ar—N; [6], Ar—HCI [8], He -HCN [9].He--CO
[10], and He—H,CO [11] interactions. We {12] have
also programmed the method and used it to calculate
the angle and distance dependence of He H,.He-CO,,
Ar—CO;, noble-gas-CO, and noble-gas- HF interac-
tions and the angle, vibrational coordinate, and dis-
tance dependence of the Ar—CO and Ar--HF interac-
tions. All results to date are very encouraging. and the
agreement with available experimental and ab initio
data is very good, considering the simplicity of the

* Research supported in part by the U.S. Atomic Energy
Commission and the University of California Los Alamos
Scientific Laboratory through Subcontract No. XPS-
72554.

** Present address: Group T-6, Los Alamos Scientitic Labora-
tory. Los Alamos, New Mexico 87544, USA.

method.

In this letter we show how to extend the calcula-
tion of electron gas intermolecular potentials to mole-
cule—molecule interactions without loss of speed or
accuracy. We apply it to HF - HF interactions as an ex-
ample and compare results with the accurate SCF cal-
culations of Yarkony et al. [13].

2. Method of calculation

We now sketch the method used to calculate mole-
cule -molecule interactions; details are given elsewhere
{12). .

In the electron gas mode! the intermolecular poten-
tial energy is the sum of Coulomb, kinetic, exchange
and correlation contributions [2.4]. The kinetic, ex-
change. and correlation terms are expressed as three-
dimensional integrals over functions of the electron
density, and the Coulomb energy is a six-dimensional
integrai over the electron densities of the two mole-
cules. When one of the species is an atom whose wave-
function is written in terms of a basis set of Slater or-
bitals, the electrostatic potential due to the atom can
be evaluated analytically. This reduces the Coulomb
integral to three dimensions. so that in the atom  mol-
ecule programs [7,12] all the terms are obtained via a
three-dimensional numerical integravon. However. in
the molecule—molecule case, the electrostatic potential
due to a molecule cannot be evaluated analytically.
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and the direct extension of the atom—molecule meth-
od leads either to a six-dimensional numerical integra-
tion, or, if the charge densities are expanded in orbi-
tals, to all the multicenter Coulomb integrals encoun-
tered in the usual ab initio methods. Either of these
approaches makes the method so much more expen-
sive computationally as to leave it little advantage over
the more accurate rigorous ab initio methods.

Our solution to this problem is to expand the
charge density, pg, of one of the molecules (B), not in
terms of products of molecular orbitals which are then
expanded in basis functions, but directly in a basis of
Slater orbitals®,

ng
Pg =Pg = ZP a;x;. 1)

The a; are determined by an ordinary linear least
squares method except that (5 — pg)? /p% =

(Pg/pp —1)? rather than (55 —pg)? is minimized to
provide a good fit to the tail of the charge distribution
(important in calculating intcractions at large intermo-
lecular distances;. The fit is improved by taking Slater
orbitals, x, centered between, as well as on the nuclei
of molecule B. If the charge densities of both mole-
cules (A and B) are thus expanded, one can rapidly
evaluate the Coulomb energy by doing only n, ng
two-center type integrals all of which can be done
using standard integral programs [14]. However, one
can also now evaluate the electrostatic potential (®p)
due to B analytically, via

Dp(ry) =1 Pp(ry)ry; dry. @

Then, in atomic units the Coulomb interaction energy
takes the form

2,1,
Ve =fd"l pA(rl)[‘I)B(rl) + ? ? rﬂ—a
z
s e N 5. fad)B(ra)], 3)
8 " a

* Gaussian basis functions were also tried, but that required a
large number of functions with small orbital exponents to
fit the tail of distribution. This is also a problem when gaus-
sian basis SCF wavefunctions arc used for input.
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where the sums are over the nucleia in A and f in B.
Here f, =Z_|N, ,where N is given by

NA =pr(’l)d’l' (4)

The second and fourth terms in the bracket in (3) are
constant; they are kept there in that form to achieve
maximum canccllation of quadrature errors. Since a
three-dimensional quadrature was already required for
the exchange, etc., energies, it turned out to be faster
in practice to use (2) and (3) and get the Coulomb en-
ergy together with the other energies than to evaluate
it using a standard two-center integral piogram [14].

A FORTRAN program to carry out the above calcu-
lation has been written [12] and will be submitted to
QCPE; some of the procedures in it are as follows: All
integration points lying outside a large ellipsoid con-
taining both molecules are bypassed. Integration over
the half-ellipsoid closest to A (B) is done using spheri-
cal-polar coordinates centered on A (B). Use of two
coordinate systems allows the quadrature points to be
chosen to handle accurately the peaking of p, and ®g
near the nuclei of A and B. respectively. Each of the
two coordinate systems rotates with its inolecuie, so
that &g, pll;/:; and p}\/3 can be calculated and tabulat-
ed at each of the quadrature points before the integra-
tion begins and used to construct the whole potential
energy surface, being changed only when vibrational
coordinates are changed. The two half-space quadrat-
ures are done simultaneously, and at each step of the
quadrature on A (B) the functions of p, (pp) needed
are obtained directly from the tables while those of
pp(p,) are obtained from low order Lagrange inter-
polation. Although the truncation of each of the two
quadratures at the boundary between the half-ellip-
soids is not an optimum procedure, the errors in the
two halves seem to cancel each other, and the proce-
dure is much faster and more accurate than any of
several other approaches that were tried. In practice
all the energy terms (Coulomb, exchange, etc.) were
obtained accurate to within about 1% at all intermolec-
ular distances using 24 to 40 point Gauss- Legendre
quadratures for the ¢, and x = cos 0 integrations and
a total of 32 to 40 points for the radial integration
which was split up into several small. piecewice Gauss
Legendre quadratures with the first few intervals end-
ing at the nuclei of A (D).
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Fig. 1. The coordinates R, 6 5, ¢, 6 for the interaction be-
tween two linear molecules.

3. Results and discussion for HF—HF interactions

As an example, the interaction energy of two hy-
drogen fluoride (HF) molecules was calculated at a
number of intermolecular distances and angles. Al-
though HF is a closed-shell molecule, this system has
strong hydrogen bonding interactions and is not an
ideal system for use of the election gas model, which
allows no adjustment of the charge densities due to
the interaction. It was chosen simply because accurate
SCF calculations [13] were available for comparison.
The calculations were carried out as described above
using the SCF wavefunctions for HF of McLean and
Yoshimine [15]: each point on the potential energy
surface required only 1-2 minutes using an 1BM 7030
computer. (This is about 1--2 min/point on an IBM
360/65 or 2—4 s/point on a CDC 7600.) A few repre-
sentative results are presented in figs. 2—5 using the
usual [16] intermolecular coordinates shown in fig. 1
rather than the highly redundant coordinates used by
Yarkony et al. [13]. Because true SCF results contain
induction but not dispersion effects a rough estimate
of the leading terms of the long range induction (IND)
energy [17] was added to the “SCF™ part (i.e., omit-
ting the correlation terms) of the electron gas results
to provide comparable quantities. One sees that for
most distances and angles the results are just as good
as for atom—atom interactions [2.4] and certainly
good enough to encourage use of the method for larger
systems where SCF results are expensive and unavail-
able. Electron gas results both with (GKR) and with-
out (GK) use of the Rae [3] exchange correction are
given; for this system results without the correction,
i.e., allowing more exchange interaction, are clearly
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Fig. 2. Comparison of SCF and electron gas results for the in-
teraction cnergy (in kcalfmole)’of two [ molecules with 05
=04 =6p = 0. The solid line gives the SCT results of ref. [13]:
the dash—double dot line is the unminodified electron gas (GK)

. SCF estimate; the dash - dot line is the (GKR) modified SCI*

estimate; the dottad line is GK plus induction: the dashed line
is GKR plus induction: and the circled dots are the long-range
electrostatic plus induction encrgy.

superior and truly remarkably good for mest angles.
This behavior is op~osite that observed in the isoelec-
tronic Ne--Ne interaction [4]. Also plotted in the fig-
ures are the estimates of the long range R~! expan-
sion [17] of the electrostatic (ES) plus induction (IND)
energies: one sees that the other energies are slowly
converging toward the asymptotic results at the largest
distances shown on the plois.

The electron gas model does not contain all the in-
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Fig. 3. HF—HF interaction with ¢4 =6 =0, 8 g = . The no-
tation is that of fig. 2.
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Fig. 4. HF —HF interaction with ¢s = 0,64 = 6 = n/2. The
notation is that of fig. 2.
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Fig. 5. HF—HF interaction with ¢5 =6 =8 = n/2. The no-

tation is that of fig. 2.

duction and charge transfer effects present in the SCF
calculation and thus fails to accurately describe the hy-
drogen bonding region shown in fig. 2. Results in fig.

2 with and without the addition of the leading terms
of the long-range induction energy show that it helps
considerably; inclusion of more long-range induction
terms [18] would make agreement a little better, so
that one can thus get most but not all of the attractive
well.

Thus, we conclude that the present method, which
is directly applicable to polyatomic—polyatomic sys-
tems as well, allows rapid construction of a good rep-
resentation of the repulsive wall of intermolecular po-
tentials. We expect that upon inclusion of van der
Waals or correlation contributions (4] one can readily
produce whole potential energy surfaces accurate
enough to be extremely useful in calculations of
V,T,R <= V T R energy transfer in molecular colli-
sions. Calculations of potential energy surfaces con-
taining vibrational as well as rotational coordinate de-
pendence are in progress for HF - HF, CO--CO. and
other systems [12].

89



Volume 33, number 3
References

[1] V.I. Gaydaenko and VK. Nikulin, Chem. Phys. Letters
7 (1970) 360;
V.K. Nikulin, Zh. Tekh. Fiz. 41 (1970) 41 [English
transl. Soviet Phys. Tech. Phys. 16 (1971) 28).

[2] R.G. Gordon and Y.S. Kim, J. Chem. Phys. 56 (1972)
3122;
Y.S. Kim and R.G. Gordon, J. Chem. Phys. 60 (1974)
1842,4323,4332;61 (1974) 1.

[3] A.LLM. Rae, Chem. Phys. Letters 18 (1973) 574.

[4] J.S. Cohen and R.T Pack, J. Chem. Phys. 61 (1974)
2372.

[S) B. Schneider, J. Chem. Phys. 58 (1973) 4447.

[6] Y.S. Kim, Thesis, Harvard University (1973).

[7] S. Green and R.G. Gordon, Program No. 251 (1974),
Quantum Chemistry Program Exchange, Indiana Univer-
sity, Bloomington, Indiana 47401, USA.

CHEMICAL PHYSICS LETTERS

90

15 June 1975

[8] S. Green, J. Chem. Phys. 60 (1974) 2654.
[9] S. Green and P. Thaddeus, Astrophys. J. 191 (1974)
653.

[10] S. Green and P. Thaddeus, Astrophys. 1., to be published.

[11] S. Green, private communication (1974).

[12] G.A. Parker, R.L. Snow and R. T Pack, to be published.

[13] D.R. Yarkony, S.V. O'Neil. H.F. Schaefer, C.P. Baskin and
C.F. Bender, J. Chem. Phys. 60 (1974) 855.

[14] S. Hagstrom, Program No. 252, Quantum Chemistry
Program Exchange, University of Indiana, Bloomington,
Indiana 47401, USA.

[15] A.D. McLean and M. Yoshimine, IBM J. Res. Develop.
Suppl. (1967). 4

[16] J.O. Hirschfelder, C.F. Curtiss and R.B. Bird, Molecular
theory of gases and liquids (Wiley, New York, 1954) p.
848.

[17) A.D. Buckingham, Advan. Chem. Phys. 12 (1967) 107.

[18] A.D. Buckingham, J. Chem. Phys. 48 (1968) 3827.

403



9L

APPENDIX C

MOLMOL: POTENTIAL ENERGY SURFACES FOR THE
INTERACTION OF TWO LINEAR MOLECULES.

(Description of program MOLMOL. See Gregory A. Parker, Richard L. Snow
and Russell T Pack, Program No. 305 (1976), Quantum Chemistry Program

Exchange, University of Indiana, Bloomington, Indiana 47401.)
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