

Brigham Young University BYU ScholarsArchive

Theses and Dissertations

1976-08-01

The intermolecular potential and vibrational relaxation of the Ar-CO system

Gregory Allen Parker Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

BYU ScholarsArchive Citation

Parker, Gregory Allen, "The intermolecular potential and vibrational relaxation of the Ar-CO system" (1976). *Theses and Dissertations*. 8330. https://scholarsarchive.byu.edu/etd/8330

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

THE INTERMOLECULAR POTENTIAL AND VIBRATIONAL RELAXATION OF THE Ar-CO SYSTEM

1.022

- P378 1976

> A Dissertation Presented to the Department of Chemistry Brigham Young University

In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

> by Gregory Allen Parker August 1976

This dissertation, by Gregory A. Parker, is accepted in its present form by the Department of Chemistry of Brigham Young University as satisfying the dissertation requirement for the degree of Doctor of Philosophy.

c

TABLE OF CONTENTS

	Page
LIST OF FIGURES	v,
LIST OF TABLES	. vii
ACKNOWLEDGEMENTS	, viii
Chapter	
I. INTRODUCTION	. 1
II. THE Ar-CO INTERMOLECULAR POTENTIAL	. 4
A. Calculations	. 4
B. Fitting of the Short Range potential	. 7
C. The Long Range Potential	. 9
1. The C. Coefficient	. 16
2. The C _o Coefficient	. 18
D. Addition of the van der Waals Tail	. 21
E. Results and Comparison with Experiment	. 22
III. Ar-CO V-T-R ENERGY TRANSFER	. 35
A. Theory	. 35
B. Calculations	. 46
1. Integral Equations	. 46
2. Piecewise Analytic Functions	. 50
3. Joining Both Methods	. 51
4. Vibrational Wavefunctions	. 52
C. Results and Comparison with Experiment	53
IV. SUMMARY AND CONCLUSIONS	. 70
REFERENCES	. 71

Page

APPENDICES

+

Α.	ROTATIONALLY INELASTIC MOLECULAR SCATTERING. COMPU-
	TATIONAL TESTS OF SOME SIMPLE SOLUTIONS OF THE STRONG
	COUPLING PROBLEM
Β.	CALCULATION OF MOLECULE-MOLECULE INTERMOLECULAR
	POTENTIALS USING ELECTRON GAS METHODS
С.	MOLMOL: POTENTIAL ENERGY SURFACES FOR THE INTERACTION
	OF TWO LINEAR MOLECULES
D.	INTERMOLECULAR POTENTIAL ENERGY SURFACES FROM ELECTRON
	GAS METHODS. I. ANGLE AND DISTANCE DEPENDENCE OF THE
	He-CO ₂ AND Ar-CO ₂ INTERACTIONS
E.	van der Waals INTERACTIONS OF CARBON MONOXIDE 203
F.	van der Waals INTERACTIONS OF I-STATE LINEAR MOLECULES
	WITH ATOMS. C, FOR NO $(X^2 \Pi)$ INTERACTIONS 207

LIST OF FIGURES

Figure		Page
1.	Center-of-mass coordinates used in the Ar-CO potential	. 6
2.	Comparison of the calculated and experimental second interaction virial coefficients	. 25
3.	Comparison of our spherically averaged potential with a spherical potential fit to high energy scattering data	. 27
4.	Contour plot of the Ar-CO potential at the equilibrium position of CO	. 28
5.	Contour plot of the vibrational derivative of the Ar-CO potential at the equilibrium position of CO	. 30
6.	Contour plot of the vibrational curvature of the Ar-CO potential at the equilibrium position of CO	. 33
7.	Center-of-mass coordinates used herein for A + BC collisions	. 36
8.	Opacity function for the 0+1 transition at $E/k_B = 1,915 {}^{O}K \dots \dots \dots \dots \dots \dots \dots \dots \dots$. 54
9.	Opacity function for the 0 \leftarrow 1 transition at E/k _B = 20,915 ^O K	. 55
10.	Opacity function for the $1 \leftarrow 2$ transition at $E/k_B = 17,869 \circ K$. 56
11.	Opacity function for the 0 \leftarrow 2 transition at E/k _B = 17,869 ^O K	. 57

Figure

.

12.	The parametric θ dependence of the IOS	
	total cross section for the $0 \leftarrow 1$ transition	
	at $E/k_B = 4,915 ^{\circ}K$	
13.	The parametric θ dependence of the IOS	
	total cross section for the 0+1 transition	
	at $E/k_B = 12,915 ^{\circ}K$	
14.	The parametric θ dependence of the IOS	
	total cross section for the $0+1$ transition	
	at $E/k_B = 20,915$ °K	
15.	The parametric θ dependence of the IOS	
	total cross section for the $0 \leftarrow 1$ transition	
	at $E/k_B = 46,915$ °K	
16.	The vibrational expansion coefficients of the	
	Ar-CO potential at $\theta = 11.2^{\circ} \dots \dots$	
17.	The vibrational expansion coefficients of the	
	Ar-CO potential at $\theta = 97.2^{\circ} \dots \dots$	
18.	The vibrational expansion coefficients of the	
	Ar-CO potnetial at $\theta = 168.2^{\circ}$	
19.	Energy dependence of the total cross	
	sections for the $\Delta v = \pm 1$ transitions	
20.	Comparison of the calculated and experimental	
	vibrational relaxation rates	

LIST OF TABLES

Table		Page	
1,	Parameters used in Eq. (2-5) for fitting the short range Ar-CO intermolecular potential	8	
2,	Parameters used in Eq. (2-6) for fitting the Ar-CO electron gas Hartree-Fock contribution at each angle	10	
3.	Parameters used in Eq. (2-6) for fitting the Ar-CO electron gas correlation energy contribution at	10	
	each angle	12	
4.	van der Waals interaction coefficients through C_8 for the interactions of CO with various partners , , ,	•• 14	
5,	Parameters used in Eq. (2-49) for smoothly joining the short range electron gas correlation estimate		
	to the long range van der Waals tail	• • 23	
6.	Values of the contours used in Fig. 4	. . 29	
7.	Values of the contours used in Fig. 5	31	
8.	Values fo the contours used in Fig. 6	34	

ACKNOWLEDGEMENTS

The author would like to express his sincere gratitude and appreciation to Dr, Russell T Pack for his excellent guidance and assistance, far beyond that normally expected.

Special thanks are given to my committee members for reviewing this dissertation, especially Dr. Richard L. Snow and Dr. E. Gerald Larson for their help and encouragement.

Appreciation is given to Associated Western Universities for making it possible to work at Los Alamos Scientific Laboratory with group T-6,to whom gratitude is also expressed for the stimulating environment which was always present.

Lastly, gratitude is also expressed to my parents, wife, and children for their patience and encouragement in my endeavors.

I. INTRODUCTION

This dissertation consists of a study of the interactions of CO with Ar. The Ar-CO system is of particular interest since Ar is often used as a buffer gas in the CO laser. Theoretical calculations are essential in understanding the detailed mechanisms which produce the population inversion and subsequent lasing. Calculations of rate constants can be very useful in understanding the experimental rates, i.e., what are the effects of rotational transitions, energy defects, and anharmonicities. Theoretical rates can also be calculated for temperature ranges and transitions which are difficult to obtain experimentally. The results of the present study represent the most extensive calculations ever to be performed on the Ar-CO system.

In order to study the interactions of CO with Ar theoretically, one must first determine the distance, angle, and vibration dependence of the potential energy surface. Because of the large number of electrons in the Ar-CO system, construction of the potential energy surface using conventional self consistant field (SCF) and configuration interaction (CI) methods is extremely time consuming and not feasible using present-day computers. However, the electron gas method developed by Gaydaenko and Nikulin [1] and Gordon and Kim [2] has been very successful in predicting the short range interactions of other closed shell systems. Modifications suggested by Cohen and Pack [3] and Gordon and Kim [4] to give the correct long range behavior have resulted in potential energy surfaces which are smooth and reasonable everywhere, and it is believed that this model should work reasonably well for the Ar-CO system. Thus, we have programmed the method for atom-molecule [5] and molecule-molecule [6] (Appendix C) interactions and used it to calculate an Ar-CO potential energy surface. Secondly, in the study of the interactions of the Ar-CO system one must perform detailed scattering calculations. Since CO has a small rotational constant, many states are strongly coupled together

by the collision, and it is not possible to include enough states in the usual close coupling method [7] to obtain convergence except at very low energies. However, the infinite order sudden approximation (which decouples the rotations) has been shown [8-12] (ref. 9 is Appendix A) to be an excellent approximation when the reduced mass of the system is large, at high relative kinetic energies, small total angular momentum and when the rotational constant of the molecule is small. Hence, it should be very accurate for rotational transitions in the Ar-CO system allowing a much smaller number of vibrationally coupled scattering equations to be solved numerically.

In chapter II we use the electron gas model to calculate the distance, angle, and vibration dependence of the Ar-CO potential energy surface. The electron gas potentials are quite reasonable in the repulsive region but fail to give the correct long range van der Waals behavior, However, modifications suggested by Cohen and Pack[3] and Gordon and Kim [4] to include the long range behavior are used to get potentials which are smooth and reasonable everywhere. To implement the modifications suggested by Cohen and Pack [3] requires one to know the van der Waals interaction coefficients. By using available experimental refractive index data, one can obtain accurate values and error bounds for the van der Waals interaction coefficients using the Pade approximant methods of Langhoff and Karplus [13]. In addition to calculating the Ar-CO interaction, we have used this procedure to calculate the van der Waals interactions of CO, [14], CO [15] (Appendix E), and NO [16] (Appendix F) with He, Ne, Ar, Kr, Xe, H, Li, Na, K, Rb, Cs, H_2 , N_2 , O_2 , CO_2 , CO, and NO. Molecules (such as NO) in Π -electronic states are very interesting since the interaction with an S-state atom breaks the degeneracy of the II-state and two potential energy surfaces arise; one for which the electronic wavefunction is symmetric and one for which it is antisymmetric under reflection in the triatomic plane.

In chapter III a simple and yet transparent derivation of the infinite order sudden [8-12] (ref. 9 is Appendix A) approximation is presented. We then obtain simplified expressions for the scattering amplitude and differential cross section in the infinite order sudden [8-12] (ref. 9 is Appendix A) approximation. These expressions should

be very useful in determing angle dependent potentials which reproduce differential cross sections obtained from molecular beam experiments.

Even though the sudden approximation is used, the numerical solution of the coupled differential scattering equations involved can be very time consuming. However, by using a combination of the two most popular methods (integral equations [17] and Airy function expansion [18]) we were able to propagate the solution 5 times as fast as either method alone. We used this combination of the two methods to determine the vibrational transition probabilities at several energies and then determined vibrational relaxation rates. Since vibrational relaxation mechanisms are very important (as in theoretical modeling of gas lasers) in molecular energy transfer studies, numerous experimental techniques (such as: relaxation behind shock waves [19], acoustic absorbtion [20], relaxation behind wave expansion [21,22], and laser fluorescence [23]) have been exploited and experimental vibrational relaxation rates are known for many systems. These experimental values are compared with our calculated rates.

In chapter IV we conclude with some remarks on the validity of this approach.

II. THE Ar-CO INTERMOLECULAR POTENTIAL

In the first section of this chapter we define the coordinate system used and briefly describe the calculation of the short range potential via the electron gas model. In section B this potential is fit to an analytic form. The van der Waals interaction coefficients are determined in section C. Then, in section D the short and long range potentials are joined to give a potential which is smooth and reasonable everywhere. We then make necessary adjustments and compare with available experimental data in section E.

A. Calculations

We summarize the electron gas model only briefly here, since a detailed description of the model [6,24,25] and our particular method of computation are given in Appendices B, C and D. For the interaction of a vibrating diatomic molecule BC (in this case CO) with an atom A (in this case Ar) the interaction potential using the coordinates of Fig. 1 can be defined as,

$$V(r,\theta,R) = E(r,\theta,R) - E(\infty, any \ \theta,R), \qquad (2-1)$$

where E is the electronic energy.

To calculate V using the electron gas model one approximates the electron density ρ of the combined system as,

$$\rho = \rho_{A} + \rho_{BC} \tag{2-2}$$

then calculates the potential energy from functionals of the unperturbed electron densities ρ_A and ρ_{BC} . These functionals are the coulombic interaction energy and integrals over the kinetic, exchange, and correlation energy densities of a uniform free electron gas. For the

calculation reported herein we have used Rae's [26] exchange energy correction. This self exchange energy correction is simply a multiplicative constant times the exchange energy term (see Appendix B) and is similar to the α in X α [27] calculations.

For subsequent fitting, the resulting interaction potential is written in terms of the electron gas estimates of the Hartree-Fock and correlation energy contributions,

$$V(r,\theta,R) = V_{HF}(r,\theta,R) + V_{COR}(r,\theta,R)$$
(2-3)

as defined in Appendices B and D.

To calculate the electron densities ρ_A and ρ_{BC} needed we used the Ar SCF wavefunctions of Clementi [28] and the CO SCF wavefunctions of Mclean and Yoshimine [29] (their wavefunctions were calculated at 6 equally spaced values of the vibrational coordinate R ranging from 1.898 a.u. to 2.483 a.u.). The potential energy surface was calculated at 14 equally spaced values of the Ar-CO distance r from r=2.5 a.u. to r=9.0 a.u., the six equally spaced values of R, and 12 values of x=cos0, which are the zeros [30] of the 12th Legendre polynomial P₁₂(x), (These points are optimum [31] for expansion of the potential in Legendre polynomials.) for a total of 1008 points. The computational time required was roughly 5.5 hrs. on the CDC 7600 computer or about 20 sec./point on the potential energy surface. Conventional configuration interaction programs would require 10-15 min./point or a total of 170-250 hrs. of CDC 7600 computer time.

Subsequent to the completion of the calculations reported herein, we have found and reported elsewhere [24] (Appendix B) a much faster (~2 sec./point) and more accurate procedure for doing the calculation. Also, since the computational time requirement for the electron gas model is completely independent of the number of electrons in the system, it is possible to calculate the potential between interacting systems with a large number of electrons.

Potential

Rather than give a large table of all the calculated points on the surface, (1008 points for each of the potential energy contributions $V_{\rm HF}$ and $V_{\rm COR}$) only the parameters that are necessary to accurately fit the potential will be given,

An attempt was made to fit the ${\rm V}_{\mbox{i}}\,(\mbox{i}={\rm HF}\mbox{ or COR})$ to the following form,

$$V_{i}(r,\theta,R) = \sum_{n=0}^{11} \sum_{m=0}^{2} \overline{v}_{nm}^{i}(r)P_{n}(x)(R-R_{e})^{m}, \qquad (2-4)$$

where R_e is the equilibrium internuclear distance of the CO molecule (2.132 a.u.), but this resulted in oscillations in the $\overline{v}_{nm}^i(r)$ for $n \neq 0$, $m \neq 0$. Consequently, we were unable to find a simple analytic function with a few adjustable parameters to accurately fit the $\overline{v}_{nm}^i(r)$. However, for each of the vibrational separations of CO a fit was obtained using,

$$V_{i}(\mathbf{r},\theta,\mathbf{R}_{m}) = \sum_{n=0}^{8} \overline{v}_{n}^{mi}(\mathbf{r}) P_{n}(\mathbf{x})$$
$$= \sum_{n=0}^{8} \overline{a}_{n}^{mi} e^{-\overline{\alpha} n \mathbf{r} - \beta_{n}^{mi} \mathbf{r}^{2}} P_{n}(\mathbf{x}). \qquad (2-5)$$

The parameters used in fitting the surface at the equilibrium position of CO are given in Table 1. This fit resulted in a standard fractional deviation of 2%.

As discussed in the next chapter our main interest was in calculating the vibrational relaxation of CO interacting with Ar, treating the rotations in the Infinite Order Sudden approximation [8-12] (IOS) and using the close-coupling method (CC) for the vibrations. For this one needs only to have an analytic fit of the potential at each angle. The following form was chosen to separately fit the correlation and Hartree-Fock energy contributions,

		i=H	ARTREE FO	СК			
	n=0	n=1	n=2	n=3	n=4	n=5	n=6
\bar{a}_n^{mi}	15.973	4009	31.726	-4.815	17.358	-1.984	.930
$\bar{\alpha}_n^{mi}$.7536	.1433	1.0909	1.0862	1.5357	1.3922	1.3951
$\overline{\beta}_n^{mi}$.0910	.1019	.0468	.0277	0.0	0.0	0.0
		i=	CORRELATI	ON			
	n=0	n=1	n=2	n=3	n=4	n=5	n=6
\bar{a}_n^{mi}	1826	.0192	0570	.0028	0143	.0022	.0008
$\bar{\alpha}_n^{\texttt{mi}}$.6513	.6444	.4865	.0710	.7925	.7684	.7213
$\overline{\beta}_n^{mi}$.0326	0.0	.0354	.0575	.0076	0.0	0.0

TABLE 1. -- Parameters used in Eq. (2-5) for fitting the short range Ar-CO electron gas intermolecular potential

$$V_{i}(\mathbf{r}, \theta_{k}, \mathbf{R}) = \sum_{m=0}^{2} V_{m}^{ki}(\mathbf{r}) (\mathbf{R} - \mathbf{R}_{e})^{m}$$

=
$$\sum_{m=0}^{2} \left(a_{m}^{ki} + b_{m}^{ki}\mathbf{r} + c_{m}^{ki}\mathbf{r}^{2} + d_{m}^{ki}\mathbf{r}^{3} \right) e^{-\alpha_{m}^{ki}\mathbf{r}} (\mathbf{R} - \mathbf{R}_{e})^{m}, \qquad (2-6)$$

for each of the 12 angles. A linear least squares algorithm was used for determining the linear coefficients and a nonlinear search for the nonlinear parameter to minimize the percent deviation rather than the standard deviation. This resulted in a deviation of 1.8%. The results of this fitting procedure are given in Tables 2 and 3.

C. The Long Range Potential

As noted elsewhere [3], if one attempts to construct the potential energy surface by simply adding together the $V_{\rm HF}$ and $V_{\rm COR}$ contributions he obtains a potential which does not have the correct long range behavior. This is due to the fact that the electron gas model does not allow for any rearrangement of the electron densities; hence, it does not have induction and dispersion contributions. As is well known [32], the correct long range behavior of the intermolecular potential can be expressed in terms of van der Waals coefficients as,

$$V_{L,R}(\mathbf{r},\mathbf{x}) = -C_6/r^6 - C_7/r^7 - C_8/r^8 - \dots$$
$$= -\frac{1}{r^6} \left[C_6(0) + C_6(2)P_2(\mathbf{x}) \right] - \frac{1}{r^7} \left[C_7(1)P_1(\mathbf{x}) + C_7(3)P_3(\mathbf{x}) \right]$$
$$- \frac{1}{r^8} \left[C_8(0) + C_8(2)P_2(\mathbf{x}) + C_8(4)P_4(\mathbf{x}) \right] - \dots \qquad (2-7)$$

We have determined and reported elsewhere [15] (Appendix E) the C_6 coefficients of CO interacting with several atoms and molecules including Ar, and, for completeness, the resulting C_6 coefficients for the interactions of CO are given in Table 4 along with higher order coefficients determined in the following subsections. The notation and method

-		Parcelande Britania arrente Bartorina										
					m = 0	i = H	ARTREE-F	OCK				
	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8	k = 9	k = 10	k = 11	k = 12
i	1.875	1.788	1.775	1.774	1.235	1.207	1.211	1.365	1.443	1.903	1.947	2.002
i	3865	1736	785.6	308.9	30.75	32.77	37.78	38.95	37.21	195.8	629.9	1408
i	-2539	-1132	-517.3	-199.9	1.965	-6.269	-8.524	2.201	18.37	-92.90	-390.9	-952.0
i	577.6	272.3	136.7	62.24	6521	.1716	.4807	-1.924	-5.231	57.41	141.2	289.6
i	-34.80	-17.88	-9.539	-4.770	.0548	.0134	0	.1333	.3043	-5.476	-11,57	-21.80
					m = 1	i = H	ARTREE-F	OCK				
	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8	k = 9	k = 10	k = 11	k = 12
i	1.984	1.941	1.944	1.309	1.383	1.287	1.275	1.717	1,768	1.836	1.916	2.012
-	7480	3126	993.3	-17.35	-27.39	-21.51	-22.44	14.19	72.40	304.6	1023	2554
-	1709	-2042	-717.5	12.55	13.06	9.398	10.67	-31.53	-73.72	-225.3	-686.2	-1694
	986.3	454.7	177.9	-2.118	-1.886	-1.279	-1.491	12.24	25,29	65.96	175.2	405.1
Ĺ	-57.00	-27.79	-11.55	.1047	.0860	.0557	.0648	9870	-2.036	-4.838	-11.97	-26.0

TABLE 2. -- Parameters used in Eq. (2-6) for fitting the Ar-CO electron gas Hartree-Fock contribution at each angle (k labels the angle)

Ň

TABLE 2. -- Continued

m = 2 i = HARTREE-FOCK												
	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8	k = 9	k = 10	k = 11	k = 12
α_{m}^{ki}	2.257	2.387	2.328	1.146	.7817	1.477	1.513	1.492	1.046	1,607	1.853	2.031
a _m ki	-2798	-14739	-4641	-5.769	-1.921	15.56	17.10	9.639	-5.159	24.62	478.7	1855
b _m ki	5124	14023	4135	1.657	.7289	-11.66	-12.95	-9,244	2.326	-21.60	-307.9	1142
c_m^{ki}	-1921	-4214	-1205	1112	0906	2.285	2.569	2.073	3166	6.052	67.03	232.4
d_{m}^{ki}	218.2	417.9	116.4	0	.0037	1309	1480	-,1275	.0136	4219	-4,071	-12.69

*

 				m = 0	i =	CORRELAT	ION				
k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8	k = 9	k = 10	k = 11	k = 12
.9676	.9450	.9441	.9485	.9646	.9086	.8898	1.036	1.038	1.040	1.044	1.051
.1452	.0637	0010	0687	1138	1517	1793	1540	1691	1845	2013	2107
3248	250.8	1865	1270	0911	0555	0384	1015	1176	1409	1653	1866
.0245	.0208	.0163	.1192	.0094	.0108	.0099	.0107	.0122	.0142	.0164	.0180
0	0	0	0	0	0004	0005	0	0	0	0	0
				m = 1	i =	CORRELAT	ION				
k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8	k = 9	k = 10	k = 11	k = 12
1.584	1.347	1.334	1.306	1.195	.9167	.8707	.8763	.9094	.9487	.9841	1.015
.2476	5230	2970	0885	.0419	.0610	.0538	.0530	.0540	.0504	.0409	.0343
2967	.6258	.3922	.1694	.0188	0269	0281	0360	0506	0702	0916	1114
.1977	2346	1477	0680	0151	.0020	.0021	.0028	.0040	.0056	.0073	.0085
0850	.0139	.0099	.0050	.0012	0	0	0	0	0	0	0

TABLE 3. -- Parameters used in Eq. (2-6) for fitting the Ar-CO electron gas correlation energy contribution at each angle (k labels the angle)

	m = 2 i = CORRELATION											
	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8	k = 9	k = 10	k = 11	k = 12
α_m^{ki}	1.431	1.464	.9621	.9013	.8867	.8871	.9350	1.016	1.291	1.384	1.433	1.438
a _m ki	1.821	1.088	0255	0214	0229	0166	0148	0131	.0106	.1497	.3244	.5018
b _m ki	-1.508	9964	.0470	.0320	.0279	.0221	.0221	.0245	.0076	1105	2715	4127
c_m^{ki}	.4490	.3443	0130	0078	0063	0050	0050	0057	.0038	.0388	.0843	.1162
d_{m}^{ki}	0513	0428	.0008	.0005	.0004	.0003	.0003	.0003	0015	0060	0119	0151

.

Coefficient	Не	Ne	Ar	Kr	Xe
C ₆ (0)	11.2±.8	23.8 ± 2.5	78.2±7.6	111 ± 12	192 ± 25
C ₆ (2)	.94 ± .27	1.99±.65	6.55 ± 2.06	7.3±3.0	16.1±5.7
C ₇ (1,ind)	.41±.06	.79±.12	3.28±.48	4.95 ± .73	8.1±1.2
C ₇ (1,dis)	2.1±1.6	4.4±3.7	14.±12	20.±17.	35 ± 31
C ₇ (1)	2.5 ± 1.7	5.1±3.8	18±12	25.±18	42 ± 32
C ₇ (3,ind)	.27±.04	.53±.08	2.19 ± .32	3.30±.48	5.38±.79
C ₇ (3,dis)	.13 ± .15	.29 ± .35	.94±1.1	1.33±1.6	2.30 ± 2.9
C ₇ (3)	.41±.19	.81±.42	3.12±1.4	4.63±2.1	7,69 ± 3,7
$\Delta_{44}^{(0,2,ind)}$	5.8±1.2	11.±2	46 ± 10	70 ± 15	114 ± 24
Δ ₄₄ (0,1,dis)	54.±5.0	128 ± 21	688 ± 105	1060 ± 174	2402 ± 448
∆ ₄₄ (0,2,dis)	101 ± 25	215 ± 62	708 ± 197	1004 ± 293	1738 ± 552
∆ ₄₄ (0,1,ind)	.015 ± .001	.039±.004	.292 ± .031	.477±.049	.776 ± .076
C ₈ (0)	161.4 ± 31	354 ± 85	1442 ± 312	2135 ± 482	4254 ± 1025
∆ ₄₄ (2,2,ind)	6.6 ± 1.4	12.7 ± 2.7	53 ± 11	80 ± 17	130 ± 28
∆ ₄₄ (2,1,dis)	3.6 ± 1.1	8.5±3.3	46 ± 18	71 ± 28	160 ± 68
∆ ₄₄ (2,2,dis)	10.4 ± 4.4	22.±10	72 ± 34	103 ± 49	178 ± 90
2∆ ₃₅ (2,dis)	40.0±21.4	85 ± 49	279 ± 159	397 ± 232	686 ± 424
2∆ ₃₅ (2,ind)	$1.4 \pm .4$	2.8±.8	12 ± 3	17 ± 5	28 ± 8
∆ ₄₄ (2,1,ind)	.012±.001	.031±.003	.23±.02	.38±.04	.62±.06
C ₈ (2)	62 ± 28	131 ± 67	462 ± 225	668 ± 332	1183 ± 618
$\Delta_{44}^{(4,2,ind)}$	5.0±1.1	9.5±2.0	39.7±8.5	60.0±12.8	98 ± 21
∆ ₄₄ (4,2,dis)	.49 ± .30	1.0±.71	3.4 ± 2.3	4.9±3.3	8 ± 6
2∆ ₃₅ (4,dis)	2.4 ± 1.8	5.2 ± 4.2	17.0±13	24.1 ± 20	42 ± 35

TABLE 4. -- van der Waals interaction coefficients through $\rm C_8$ for the interactions of CO with various partners

TABLE 4, -- Continued

Coefficient	Не	Ne	Ar	Kr	Xe
^{2Δ} 35 ^(4,ind)	.80±.23	1.5±.4	6.4±1.8	9.7±2.8	15.8±4.5
C ₈ (4)	8.7±3	17 ± 7	67 ± 26	99 ± 39	164 ± 67

is that of Pack [32] in his studies of van der Waals coefficients for atom-linear molecule systems, except that we denote the atom by A and the molecule by BC.

i. The C_7 Coefficient

As shown elsewhere [32] the C_7 coefficients can be written in terms of induction and dispersion contributions,

$$C_7(n) = C_7(n, ind) + C_7(n, dis), n = 1 \text{ or } 3.$$
 (2-8)

The induction contributions are

$$C_7(1, ind) = \frac{18}{5} \mu(BC)\theta(BC)\alpha(A)$$
 (2-9)

and

$$C_7(3,ind) = \frac{12}{5} \mu(BC)\theta(BC)\alpha(A),$$
 (2-10)

where $\alpha(A)$ is the polarizability of the atom A, and $\mu(BC)$ and $\theta(BC)$ are the permanent dipole and quadrupole moments of the molecule BC.

Using the labels n and v to identify the electronic states of A and BC, respectively, the dispersion contributions can be written in terms of the generalized oscillator strengths,

$$f^{\mu}_{0\nu}(\ell,\ell'') = 2 \varepsilon_{\nu} <_{\nu} |Q^{\mu}_{\ell}|_{0} >^{*} <_{\nu} |Q^{\mu}_{\ell,\ell}|_{0} > (2-11)$$

as

$$C_{7}(1, \text{dis}) = \frac{9}{5} \sum_{\nu, n} \int_{\varepsilon_{n} \varepsilon_{\nu}(\varepsilon_{n} + \varepsilon_{\nu})}^{\varepsilon_{0}(1, 1)} \left[f_{0\nu}^{0}(1, 2) + \sqrt{3} f_{0\nu}^{1}(1, 2) \right] \quad (2-12)$$

and

$$C_{7}(3,dis) = \frac{6}{5} \sum_{\nu,n} \frac{f_{on}^{0}(1,1)}{\varepsilon_{n} \varepsilon_{\nu} (\varepsilon_{n} + \varepsilon_{\nu})} \left[f_{o\nu}^{0}(1,2) - \frac{2}{\sqrt{3}} f_{o\nu}^{1}(1,2) \right]$$
(2-13)

where ε_{v} are the electronic excitation energies, and the double prime on the sum implies omission of all the terms with either n = 0 or v = 0. The multipole moment operators in Eq. (2-11) are given by,

$$Q_{\ell}^{m}(BC) = [4\pi/(2\ell+1)]^{1/2} \sum_{i \in BC} Z_{i} r_{i}^{\ell} Y_{\ell}^{m}(\theta_{i}, \phi_{i}), \qquad (2-14)$$

where the summation is over all the electrons and nuclei belonging to BC, the coordinates are measured from the center of mass of BC, and the z-axis is taken to be along the diatomic R axis. Similar formulas hold for atom A. Upon replacing the arithmetic mean $(\varepsilon_v + \varepsilon_n)/2$ by the geometric mean $(\varepsilon_v \varepsilon_n)^{1/2}$ in Eqs. (2-12) and (2-13), one obtains good approximations to the van der Waals coefficients,

$$C_7(1,dis) \approx \frac{9}{10} S_A(1,1,-\frac{3}{2}) \left[S_{BC}^o(1,2,-\frac{3}{2}) + \sqrt{3} S_{BC}^1(1,2,-\frac{3}{2}) \right]$$
 (2-15)

and

$$C_7(3,dis) \approx \frac{6}{10} S_A(1,1,-\frac{3}{2}) \left[S_{BC}^o(1,2,-\frac{3}{2}) - \frac{2}{\sqrt{3}} S_{BC}^1(1,2,-\frac{3}{2}) \right]$$
 (2-16)

in terms of the generalized oscillator strength sums,

$$S_{BC}^{\mu}(\ell,\ell',k) = \sum_{\nu} f_{\nu\nu}^{\mu}(\ell,\ell') \varepsilon_{\nu}^{k}, \qquad (2-17)$$

where the prime on the sum implies omission of the v=0 term. For the spherical atom the S^{μ}_{A} are independent of μ . Using an oscillator model in which the center of charge is displaced by a distance of z_{0} from the

center of mass, one obtains an expression for the $S^{\mu}_{BC}(1,2,k)$ in terms of $S^{\mu}_{BC}(1,1,k)$ as [32],

$$S_{BC}^{o}(1,2,k) = 2 z_{o} S_{BC}^{o}(1,1,k)$$
 (2-18)

and

$$S_{BC}^{1}(1,2,k) = \sqrt{3} z_{o} S_{BC}^{1}(1,1,k).$$
 (2-19)

Since the C_6 coefficients are expressed in these same quantities [32]

$$C_{6}(0,dis) \approx \frac{1}{4} S_{A}(1,1,-\frac{3}{2}) \left[S_{BC}^{0}(1,1,-\frac{3}{2}) + 2S_{BC}^{1}(1,1,-\frac{3}{2})\right]$$
 (2-20)

and

$$C_{6}(2,dis) \approx \frac{1}{4} S_{A}(1,1,-\frac{3}{2}) \left[S_{BC}^{0}(1,1,-\frac{3}{2}) - S_{BC}^{1}(1,1,-\frac{3}{2})\right]$$
 (2-21)

the C_7 coefficients can be written in terms of the C_6 coefficients as,

$$C_7(1,dis) \approx 6 z_0 \left[C_6(0,dis) + \frac{1}{5} C_6(2,dis) \right]$$
 (2-22)

and

$$C_7(3,dis) \approx \frac{24 z_0}{5} C_6(2,dis).$$
 (2-23)

ii. The C₈ Coefficients

The procedure used in determining the C₈ coefficient

$$C_8 = C_8(0) + C_8(2) P_2(x) + C_8(4) P_4(x)$$
 (2-24)

is the same as that given by Pack [32], and it is recommended that the reader refer to that paper for details. We only give the formulas that are necessary in its construction. Again each of the coefficients in Eq. (2-24) can be written in terms of induction and dispersion contributions,

$$C_{g}(L) = C_{g}(L,ind) + C_{g}(L,dis).$$
 (2-25)

It is convenient to express the induction and dispersion contributions as

$$C_8(L,ind) = 2 \Delta_{35}(L,ind) + \sum_{\ell=1}^2 \Delta_{44}(L,\ell,ind)$$
 (2-26)

and

$$C_8(L,dis) = 2 \Delta_{35}(L,dis) + \sum_{\ell=1}^2 \Delta_{44}(L,\ell,dis).$$
 (2-27)

The induction terms are,

$$\Delta_{35}(0, ind) = 0, \qquad (2-28)$$

$$\Delta_{35}(2, ind) = \frac{18}{7} \mu(BC) \overline{Q}_{3}(BC) \alpha(A), \qquad (2-29)$$

$$\Delta_{35}(4, ind) = \frac{10}{7} \mu(BC)\overline{Q}_3(BC)\alpha(A),$$
 (2-30)

$$\Delta_{44}(0,1,ind) = \frac{5}{2} \mu^2(BC)q(A), \qquad (2-31)$$

$$\Delta_{44}(0,1,ind) = 2 \mu^2(BC)q(A),$$
 (2-32)

 $\Delta_{44}(4,1,ind) = 0$, (2-33)

$$\Delta_{44}(0,2,ind) = \frac{3}{2} \theta^2(BC)\alpha(A), \qquad (2-34)$$

$$\Delta_{44}(2,2,\text{ind}) = \frac{12}{7} \theta^2(BC)\alpha(A), \qquad (2-35)$$

and

$$\Delta_{44}(4,2,ind) = \frac{9}{7} \theta^2(BC)\alpha(A), \qquad (2-36)$$

where $\overline{Q}_3(BC)$ is the permanent octupole moment of the molecule and q(A) is the quadrupole polarizability of A. By replacing the arithmetic by the geometric mean, Pack [32] was able to express the dispersion contributions as

$$\Delta_{35}(2, \text{dis}) \approx \frac{12}{7} a\left(-\frac{3}{2}\right) \Delta_{44}(0, 2, \text{dis}),$$
 (2-37)

$$\Delta_{35}(4, \text{dis}) \approx \frac{20}{21} b\left(-\frac{3}{2}\right) \Delta_{44}(0, 2, \text{dis}),$$
 (2-38)

$$\Delta_{44}(0,1,dis) \approx \frac{1}{2} C_6(0,dis,A,B) C_8(A,A)/C_6(A,A),$$
 (2-39)

$$\Delta_{44}(2,1,\mathrm{dis}) \approx \frac{4}{5} \mathrm{d}\left(-\frac{3}{2}\right) \Delta_{44}(0,1,\mathrm{dis}),$$
 (2-40)

$$\Delta_{44}(0,2,dis) \approx \frac{1}{2} C_6(0,dis,A,B) C_8(0,dis,B,B)/C_6(0,dis,B,B),$$
 (2-41)

$$\Delta_{44}(2,2,\text{dis}) \approx \frac{8}{7} e\left(-\frac{3}{2}\right) \Delta_{44}(0,2,\text{dis}),$$
 (2-42)

$$\Delta_{44}(4,2,\mathrm{dis}) \approx \frac{6}{7} g\left(-\frac{3}{2}\right) \Delta_{44}(0,2,\mathrm{dis}).$$
 (2-43)

Here,

$$a(k) = \left[S_{BC}^{O}(1,1,k) - S_{BC}^{1}(1,1,k)\right] / \left[S_{BC}^{O}(1,1,k) + 2S_{BC}^{1}(1,1,k)\right], \qquad (2-44)$$

$$b(k) = \left[S_{BC}^{0}(2,2,k)+S_{BC}^{1}(2,2,k)-2 S_{BC}^{2}(2,2,k)\right] / \left[S_{BC}^{0}(2,2,k)+2 S_{BC}^{1}(2,2,k)+2 S_{BC}^{2}(2,2,k)\right], \qquad (2-45)$$

$$d(k) = \left[S_{BC}^{0}(2,2,k)-\frac{4}{3} S_{BC}^{1}(2,2,k)+\frac{1}{3} S_{BC}^{2}(2,2,k)\right] / \left[S_{BC}^{0}(2,2,k)+2 S_{BC}^{1}(2,2,k)+2 S_{BC}^{2}(2,2,k)\right], \qquad (2-46)$$

$$e(k) = \left[S_{BC}^{0}(1,3,k)+2\left(\frac{2}{3}\right)^{1/2} S_{BC}(1,3,k)\right] / \left[S_{BC}^{0}(2,2,k)+2 S_{BC}^{1}(2,2,k)+2 S_{BC}^{2}(2,2,k)\right], \qquad (2-47)$$

and

$$g(k) = \left[S_{BC}^{o}(1,3,k) - \left(\frac{3}{2}\right)^{1/2} S_{BC}^{o}(1,3,k)\right] / \left[S_{BC}^{o}(2,2,k) + 2 S_{BC}^{1}(2,2,k) + 2 S_{BC}^{2}(2,2,k)\right]. \quad (2-48)$$

Pack [32] obtains values for the quantities in these equations by use of the oscillator model. The results for the interactions of CO with several atoms are given in Table 4. The error estimates may be small, but we feel that they are reasonable.

D. Addition of the van der Waals Tail

We can obtain a potential which has the correct behavior at both short and long range by using a simple generalization of the method used by Cohen and Pack [3] for atoms. This can easily be done by letting,

$$V_{m}^{kCOR}(r) = \begin{cases} V_{m}^{kCOR}(r) , r \leq r_{m}^{k} \\ V_{L.R.}(r, x_{k})A_{m} + B_{m}^{k}V_{m}^{kCOR}(r), r > r_{m}^{k} \end{cases}$$
(2-49)

where the r_m^k are the points where the logarithmic derivatives (with respect to r) of the two forms are equal (this insures that the first derivative is continuous). The B_m^k were chosen to make the potential continuous at r_m^k and hence continuous everywhere. In order to get a rough estimate of the vibrational dependence of the long range interaction the A_m were chosen to be the angle average of the vibrational dependence of the short range potential at the point where the logarithmic derivative of the short and long range potentials are equal, i.e.,

$$A_{m} = \sum_{k=1}^{12} w_{k} V_{m}^{kcor}(\mathbf{r}_{m}^{k}) / \sum_{k=1}^{12} w_{k} V_{o}^{kcor}(\mathbf{r}_{o}^{k})$$
(2-50)

where the w_k are the weights [30] associated with a 12-point Gauss-Legendre quadrature. We could have obtained a more accurate long range vibrational dependence of the induction terms by using expansions of the dipole, quadrupole, and octupole moments in powers of (R-R_e) but did not because the exact long range vibrational dependence should have little effect on the vibrational relaxation of CO for reasons discussed in the next chapter. Also the largest contributions are usually the dispersion terms, whose vibrational dependence would have been difficult to obtain accurately. The results of the above procedure are given in Table 5.

E. Results and Comparison with Experiment

In this section we compare the second interaction virial coefficients obtained from our calculated potential with the experimental values of Brewer [33] and also compare our spherically averaged potential with a spherical potential of Jordan et al. [34] which was inferred from their high energy scattering data. Vibrational relaxation data will be used to further test the potential in chapter III.

We determined the interaction second virial coefficients of the Ar-CO system at the equilibrium position of CO using [35]

$$B(T) = \pi \int_{0}^{\infty} r^{2} dr \int_{-1}^{1} dx \{1 - \exp[-V(r, x, R_{e})/kT]\}$$
(2-51)

	r_m^k												
m k	1	2	3	4	5	6	7	8	9	10	11	12	
0	6.819	6.729	6.626	6.484	6.297	6.113	6.008	5,995	6.029	6.072	6.107	6.129	
1	6.347	6.294	6.193	6.117	6.427	6.982	7.060	6.972	6.848	6.725	6,626	6.574	
2	7.636	7.553	7.844	8.136	8.266	8.337	8.416	8.340	8.018	7.548	7,273	7.203	
							B ^k m						
m k	1	2	3	4	5	6	7	8	9	10	11	12	
0	.6137	.5628	.4625	.2997	.0763	1411	2444	2113	1045	.0006	.0759	.1165	
1	.8863	.8476	.7386	.4541	.1050	.3874	.6443	.7586	.8132	.8416	.8566	.8638	
2	.9881	.9830	.9730	.9584	.9426	.9252	.9110	.9183	.9398	.9577	.9672	.9715	
							A						
	m = 0	m = 1	m = 2				111						
	1.0	. 3084	.0763								ana ya atau wata ƙas		

TABLE 5. -- Parameters used in Eq. (2-49) for smoothly joining the short range electron gas correlation estimate to the long range van der Waals tail

where k is Boltzmann's constant and T is the absolute temperature. Vibrational averaging of the virial coefficients should be unnecessary for the temperature range $(T=100-300^{\circ}K)$ of concern to us because the CO vibrational motion contributes little at these temperatures. In evaluation of Eq. (2-51), we used a 48-point Gauss-laguerre quadrature for the r integration and a 48-point Gauss-Legendre quadrature for the $x=\cos\theta$ integration. The results (in cc/mole) are shown in Fig. 2, where one sees that our virial coefficients (--- dashed line) are too large. This implies that our short range potential is too repulsive or the long range potential is not attractive enough. Had Rae's [26] self exchange energy correction not been used, we may have obtained better agreement. For some systems this correction seems to improve the agreement but not for others. We now believe that this self exchange energy correction (which is similar to the α in X α [27] calculations) should be varied as an empirical parameter to fit the experimental second virial coefficients or other data. Since we determined only the Hartree-Fock estimate which is the sum of the exchange, kinetic, and coulombic energies

$$V_{\rm HF} = V_{\rm EX} + V_{\rm KIN} + V_{\rm COUL}$$
(2-52)

we had no way of doing this, so that it was necessary to scale the Hartree-Fock and short range correlation electron gas estimates to fit the experimental virial coefficients. An excellent agreement (percent deviation of 0.2%) was obtained using scaling factors of 0.77 and 2.62, respectively for the Hartree-Fock and short range correlation energies. Our new potential is now given by

$$V_{(r,\theta,R)} = 0.77 V_{HF}(r,\theta,k) + \overline{V}_{COR}(r,\theta,R)$$
 (2-53)

where

$$V_{COR}(r, \theta_R, R) = \sum_{m=0}^{2} \overline{V}_m^{kCOR}(r) (R-R_e)^m$$
 (2-54)

Fig. 2. -- Comparison of calculated and experimental interaction second virial coefficients. Dashed line --- before adjustment, Solid line --- after adjustment. Triangles \triangle are the experimental values of Brewer ref. 14.

and

$$\bar{\mathbf{v}}_{m}^{kCOR} = \begin{cases} 2.62 \ \bar{\mathbf{v}}_{m}^{kCOR}(\mathbf{r}) & \mathbf{r} \leq \mathbf{r}_{m}^{k} \\ & & & (2-55) \end{cases}$$

$$V_{L,R,}(\mathbf{r},\theta_{k})A_{m} + (1.62 + B_{m}^{k})V_{m}^{kCOR}(\mathbf{r}) & \mathbf{r} \geq \mathbf{r}_{m}^{k} \end{cases}$$

A plot of our new virial coefficients (— solid line) is also shown in Fig. 2 and, as can be seen, they are in excellent agreement (within experimental error) with the experimental values of Brewer.

In Fig. 3 we compare our spherically averaged potential with a spherical potential of Jordan et al.[34]. Their potential was obtained from fitting their high energy Ar-CO scattering data to a spherical potential of the form

$$V(r) = A/r^{\gamma}$$
 2.09 Å < r < 2.68 Å. (2-56)

They obtained A = 551 and γ = 6,99 with the potential given in e.v. The agreement is excellent considering that a spherical potential fit to scattering data need not be the spherical average of the true potential.

The contour plot in Fig. 4 is that of the Ar-CO intermolecular potential at the vibrational equilibrium position of CO $V(r,\theta,R_e)$. The values of the contours are given in Table 6. As can be seen the potential has a minimum of roughly -.0004 a.u. (130[°]K) deep. The -.0004 a.u. contour extends almost completely around the CO molecule which indicates that the minimum is very flat.

The contours shown in Fig. 5 are of the vibrational derivative of the potential at the equilibrium position of CO,

$$\frac{\partial}{\partial R} V(r,\theta,R) |_{R=R} e$$
 (2-57)

where the value of the labeled contours are given in Table 7.

Fig. 3. -- Comparison of our spherically averaged potential with a spherical potential fit to high energy scattering data. Solid line --- result of present calculations. Dashed line --- the spherical potential of Jordan et. al. ref.

Fig. 4. -- Contour plot of the Ar-CO potential at the vibrational equilibrium position of CO. Values of the contours are given in Table 6.

28

Identifaction	Contour Value (a.u.)
A – A – A – A	0004
B - B - B - B	0002
C - C - C - C	.0000
D – D – D – D	.0010
E - E - E - E	.0100
F - F - F - F	.1000
G - G - G - G	1.0000
H - H - H - H	10.0000

.

.

TABLE 6. -- Values of the contours used in Fig. 4

~

Fig. 5. \sim Contour plot of the vibrational derivative of the Ar $_{\sim}$ CO potential at the equilibrium position of CO. Values of the contours are given in table 7.

30

Identifaction	Contour Value (a.u.)
A – A – A – A	-1.0000
B - B - B - B	1000
C - C - C - C	0100
D – D – D – D	0001
E - E - E - E	.0000
F - F - F - F	.0010
G - G - G - G	.0100
Н – Н – Н – Н	.1000
I - I - I - I	1.0000
J - J - J - J	10.0000

.

TABLE 7. -- Values of the contours used in Fig. 5

Between the nuclei there is a deep well region as should be expected since in this expansion the vibrational derivative should approach a negative infinity at the nuclei from the inside and a positive infinity from the outside which also causes the cliff region.

The contours of Table 8 were used in plotting the vibrational curvature,

$$\frac{\partial^2}{\partial R^2} V(\mathbf{r}, \theta, R) \Big|_{R=R_e}$$
 (2-58)

of the Ar-CO potential shown in Fig. 6. It has the same qualitative behavior as the vibrational derivative in Fig. 5 but is somewhat smoother.

Fig. 6. -- Contour plot of the vibrational curvature of the Ar-CO potential at the equilibrium position of CO. Values of the contours are given in Table 8.

TABLE	8.		Values	of	the	co	nto	urs	us	ed	iı	n	Fi	g.	6	,)					
				4															 	 	

		т	lond: Co.						C												

Identifaction	Contour Value (a.u.)
A – A – A – A	1000
B – B – B – B	0100
C - C - C - C	0010
D – D – D – D	0001
E – E – E – E	。0000
F - F - F - F	.0010
G – G – G – G	.0100
H - H - H - H	.1000
I - I - I - I	1.0000
J – J – J – J	10.0000

.

.

III. Ar-CO V-T-R ENERGY TRANSFER

In the first section of this chapter the theory of molecular collisions in the Infinite Order Sudden (IOS) approximation is described. In section B we describe the calculation of V-T-R (Vibrational-Translational-Rotational) energy transfer, total cross sections, and vibrational relaxation rates, treating the rotations in the IOS approximation and using close-coupling for the vibrations. These calculations use the Ar-CO potential previously described in chapter II. Then our calculated vibrational relaxation rates will be compared with experiment in section C.

A. Theory

The formal theory of the Infinite Order Sudden (IOS) approximation has been derived using both space-fixed [8] and bodyfixed [10] coordinates. Both approaches are enlightening and give very valuable insights into the validity range of the approximation. In this section we present a derivation of the IOS approximation which is equivalent to that given by Secrest [11] but is more straightforward and clearly shows its relation to the semi-classical sudden [36] approximation. After separation of the center of mass motion, the Hamiltonian [using either the space-fixed (primed) axes or body-fixed (unprimed) axes shown in Fig. 7] for an atom A interacting with a Σ -state diatomic molecule BC can be written in the form,

$$H = \frac{-\hbar^2}{2\mu} r^{-1} \frac{\partial^2}{\partial r^2} r + \frac{L^2}{2\mu^2} + H_{BC} + V(r,\theta,R), \qquad (3-1)$$

where L and μ are, respectively, the angular momentum operator [37] and reduced mass,

$$\mu = m_A m_{BC} / \left(m_A + m_{BC} \right), \qquad (3-2)$$

Fig. 7. -- Center-of-mass coordinates used herein for A + BC collisions. The primed axes are the space-fixed coordinates, the unprimed axes are the body-fixed coordinates.

of A relative to BC and V(r, θ ,R) is the Born-Oppenheimer intermolecular potential. The internal Hamiltonian H_{BC} in Eq. (3-1) governs the nuclear motion of the diatomic molecule BC,

$$\mathcal{H}_{BC} = -\frac{\hbar^2}{2\mu_{BC}} R^{-2} \frac{\partial}{\partial R} R^2 \frac{\partial}{\partial R} + \frac{J_{R}^2}{2\mu_{BC}R^2} + V_{BC}(R), \qquad (3-3)$$

where μ_{RC} is the reduced mass,

$$\mu_{BC} = m_{B} m_{C} / (m_{B} + m_{C}), \qquad (3-4)$$

 J_R is the angular momentum operator [38] of the diatomic molecule, and V_{BC} is the Born-Oppenheimer interatomic potential. In the IOS approximation the following replacements of operators by constants are made [39],

$$\mathbf{L}^{2} \to \hbar^{2} \lambda (\lambda + 1), \qquad (3-5)$$

in Eq. (3-1) and

$$J_{\sim R}^{2} \rightarrow \hbar^{2} \overline{j}(\overline{j} + 1), \qquad (3-6)$$

in Eq. (3-3) to give,

$$\left[-\frac{\hbar^2}{2\mu} \mathbf{r}^{-1} \frac{\partial^2}{\partial \mathbf{r}^2} \mathbf{r} + \frac{\hbar^2 \lambda(\lambda+1)}{2\mu \mathbf{r}^2} + V(\mathbf{r},\theta,\mathbf{R}) - \frac{\hbar^2}{2\mu_{BC}} \mathbf{R}^{-2} \frac{\partial}{\partial \mathbf{R}} \mathbf{R}^2 \frac{\partial}{\partial \mathbf{R}} \right]$$

$$+ \frac{\hbar^2 \mathbf{j}(\mathbf{j}+1)}{2\mu_{BC} \mathbf{R}^2} + V_{BC}(\mathbf{R}) \left[\psi_{\mathcal{V}}^{\lambda \mathbf{j}}(\mathbf{r},\mathbf{R};\theta) = \mathbf{E} \psi_{\mathcal{V}}^{\lambda \mathbf{j}}(\mathbf{r},\mathbf{k};\theta) \right]$$

$$(3-7)$$

Where the notation on the wavefunction $\psi_{\mathcal{V}}^{\lambda \overline{j}}(\mathbf{r},\mathbf{R};\theta)$ is used to indicate that it now has only a parametric dependence upon the angle θ . The numbers λ and \overline{j} in Eq. (3-7) are arbitrary constants. The wavefunction $\psi_{\mathcal{V}}^{\lambda \overline{j}}(\mathbf{r},\mathbf{R};\theta)$ can be expanded in a complete set of vibrational wavefunctions $\chi_{\overline{i}\mathcal{V}}^{-}$ -(R)

$$\psi_{v}^{\lambda \overline{j}}(\mathbf{r}, \mathbf{R}; \theta) = \sum_{v} r^{-1} g_{v}^{v} (\mathbf{r}; \theta) \chi_{\overline{j}v}^{*} (\mathbf{R})$$
(3-8)

where

$$\left[-\frac{\hbar^{2}}{2\mu_{BC}}R^{-2}\frac{\partial}{\partial R}R^{2}\frac{\partial}{\partial R} + \frac{\hbar^{2}\overline{j}(\overline{j}+1)}{2\mu_{BC}R^{2}} + V_{BC}(R)\right]\chi_{\overline{j}\nu}(R) = \varepsilon_{\overline{j}\nu}\chi_{\overline{j}\nu}(R) \quad (3-9)$$

and $\varepsilon_{\overline{j}\nu}$ are the rotation-vibration energy levels. Substitution of Eq. (3-8) into Eq. (3-7), multiplication by $\frac{-2\mu}{\hbar^2} X_{\overline{j}\nu}^*$ (R) on the left and integration over R gives the following set of second order coupled differential equations,

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} + k\frac{2}{\mathrm{j}\nu} - \frac{\lambda(\lambda+1)}{r^2}\right] g_{\nu}^{\nu} (r;\theta) = \sum_{\nu''} U_{\nu''}^{\nu} (r,\theta) g_{\nu''}^{\nu} (r;\theta) \quad (3-10)$$

where

$$k\frac{2}{j} = \frac{2\mu}{\hbar^2} \left[E - \varepsilon_{\overline{j}\nu} \right]$$
(3-11)

and

$$U_{v}^{v} - (r, \theta) = \frac{2\mu}{\hbar^{2}} \int_{0}^{\infty} R^{2} \chi_{v}^{*} - (R) V(r, \theta, R) \chi_{v}(R) dR \qquad (3-12)$$

These equations are solved subject to the boundary conditions,

$$g_{v}^{V}(0;\theta) = 0$$
 (3-13)

and

$$g_{v}^{\nu} (\mathbf{r}; \theta) \xrightarrow{\mathbf{r} \to \infty} k_{\overline{j}v}^{-1/2} \left\{ \delta_{vv} \exp \left[-i \left(k_{\overline{j}v} \mathbf{r} - \frac{\lambda \pi}{2} \right) \right] - S_{vv}^{j\lambda} (\theta) \exp \left[i \left(k_{\overline{j}v} \mathbf{r} - \frac{\lambda \pi}{2} \right) \right] \right\}$$
(3-14)

These are not the usual IOS solutions [10] but the usual scattering solutions can be obtained by projection. The body-fixed solutions are

$$G_{j}^{\overline{J}j\Omega\nu}(\mathbf{r}) = \langle j^{\prime}\Omega^{\prime} | g_{\nu}^{\nu}(\mathbf{r};\theta) | j\Omega \rangle \exp\left[i\frac{\pi}{2}(J+j-\lambda)\right] \quad (3-15)$$

where

$$|j\Omega\rangle = Y_{j\Omega}(\hat{R})$$
 (3-16)

and $Y_{j\Omega}(\hat{R})$ is a spherical harmonic with angles $\hat{R} = (\theta, \phi)$ in the bodyfixed system. That these are indeed the solutions of the usual IOS scattering equations can be shown by multiplying $\langle j \Omega' |$ on the left and $|j\Omega \rangle \exp\left[\frac{i\pi}{2} (J-j + \lambda)\right]$ on the right of Eq. (3-10) to give

$$\begin{bmatrix} \frac{d^2}{dr^2} + k\frac{2}{j\nu} - \frac{\lambda(\lambda+1)}{r^2} \end{bmatrix} G_{j \ \Omega \ \nu}^{Jj\Omega\nu}(\mathbf{r})$$

$$= \sum_{\nu} \langle j \ \Omega \ | U_{\nu}^{\nu}(\mathbf{r},\theta) g_{\nu}^{\nu}(\mathbf{r};\theta) | j\Omega \rangle \exp\left[\frac{i\pi}{2} (J + j - \lambda)\right]. \quad (3-17)$$

Then inserting the completeness relation [40],

$$1 = \sum_{j} \sum_{\Omega'} |j' \Omega' \rangle \langle j' \Omega''| \qquad (3-18)$$

on the right hand side of Eq. (3-17) gives the usual IOS scattering equations [10]

$$\left[\frac{d^2}{dr^2} + k_{j\nu}^2 - \frac{\lambda(\lambda+1)}{r^2} \right] G_{j \ \Omega'\nu}^{Jjr\nu}(\mathbf{r})$$

$$= \sum_{j \ \nu''} \sum_{\nu''} \langle j \Omega' | U_{\nu''}^{\nu}(\mathbf{r}, \theta) | j \ \Omega' \rangle G_{j \ \Omega'\nu'}^{Jj\Omega\nu}$$

$$(3-19)$$

in the body-fixed formulation, where we have used [41]

$$\langle \mathbf{j}^{\mathbf{\Omega}} | \mathbf{U}_{\mathbf{V}}^{\mathbf{V}} - (\mathbf{r}, \theta) | \mathbf{j}^{\mathbf{\Omega}} \hat{\mathbf{\Omega}}^{\mathbf{U}} \rangle$$
$$= \delta_{\mathbf{\Omega}^{\mathbf{\Omega}} - \mathbf{\Omega}^{\mathbf{U}}} \langle \mathbf{j}^{\mathbf{\Omega}} | \mathbf{U}_{\mathbf{V}}^{\mathbf{V}} - (\mathbf{r}, \theta) | \mathbf{j}^{\mathbf{\Omega}} \hat{\mathbf{\Omega}}^{\mathbf{U}} \rangle \qquad (3-20)$$

in obtaining this result. The solutions $G_{j~\Omega^{-}\nu^{-}}^{Jj\Omega\nu}(r)$ are subject to the boundary conditions,

$$G_{j}^{Jj\Omega\nu}(0) = 0 \qquad (3-21)$$

and

$$G_{j}^{Jj\Omega\nu}(\mathbf{r}) \xrightarrow[\mathbf{r}\to\infty]{} k_{j\nu}^{-1/2} \left\{ \delta_{jj} \delta_{\Omega\Omega} \delta_{\nu\nu} \exp\left[-i\left(k_{\overline{j}\nu}\mathbf{r} - (J+j)\frac{\pi}{2}\right)\right] - S^{J}(j^{\prime}\Omega^{\prime}\nu^{\prime}|j,-\Omega,\nu) \exp\left[i\left(k_{\overline{j}\nu}\mathbf{r} - \frac{(J+j^{\prime})\pi}{2}\right)\right] \right\}$$
(3-22)

where S^{J} is the scattering matrix. Multiplication of Eqs. (3-13) and (3-14) by $\langle j \, \Omega' |$ and exp $\frac{i\pi}{2}$ (J+j- λ) $|j\Omega\rangle$ on the left and right, respectively, gives

$$G_{j}^{Jj\Omega\nu}(0) = 0 \qquad (3-23)$$

and

$$\begin{array}{c} G_{j}^{Jj\Omega\nu} (\mathbf{r}) \xrightarrow{\mathbf{r} \rightarrow \infty} \mathbf{k} \frac{-1/2}{j\nu} \left\{ \delta_{jj} - \delta_{\Omega\Omega} - \delta_{\nu\nu} - \exp\left[-i\left(\mathbf{k}_{\overline{j}\nu} \mathbf{r} - \frac{(J+j)\pi}{2}\right)\right] \\ -(-1)^{J-\lambda} \mathbf{i}^{j'+j} \left\langle \mathbf{j} - \Omega' \right| \mathbf{s} \frac{\overline{j}\lambda}{\nu\nu} - (\theta) \left| \mathbf{j}\Omega \right\rangle \exp\left[\mathbf{i} \left(\mathbf{k}_{\overline{j}\nu} - \mathbf{r} - \frac{(J+j')\pi}{2}\right)\right] \right\} (3-24) \end{array}$$

which proves that these are the usual IOS scattering solutions. Also from the comparison of Eq. (3-23) with Eq. (3-22) one obtains an expression for the scattering matrix S^{J} ,

$$S^{J}(j \cap \sqrt{j}, -\Omega, \nu,) = \langle j\Omega | S_{\nu\nu}^{\overline{j}\lambda}(\theta) | j \cap \sqrt{(-1)}^{J-\lambda} (ij^{j+j}), \quad (3-25)$$

The space-fixed IOS solutions [10] can also be constructed by projection [39]

$$G_{j \ell \nu}^{Jj \ell \nu}(\mathbf{r}) = \langle JMj \ell | g_{\nu}^{\nu}(\mathbf{r}; \theta) | JMj \ell^{\prime} \rangle \qquad (3-26)$$

where the brackets imply integration with

$$\langle JMj\ell | = \sum_{m_j=-j}^{j} \sum_{m_\ell=-\ell}^{\ell} C(j\ell\overline{J};m_jm_\ell m) Y_{jm_j}(\widehat{R}) Y_{\ell m_\ell}(\widehat{r})$$
(3-27)

with angles $\hat{R} = (\theta, \phi)$ and $\hat{T} = (\theta, \phi)$ in the space-fixed system. That these are the usual IOS space-fixed solutions is easily proved as before giving the S^{J} matrix as,

$$S^{J}(j \ell v' | j \ell v) = \langle JM j \ell | S^{j\lambda}_{vv}(\theta) | JM j' \ell' \rangle. \qquad (3-28)$$

Using any physically reasonable choice for \overline{j} and λ which are independent of the total angular momentum J, the J sum in the scattering amplitude formula can be done analytically to give simplified expressions for the scattering amplitude and differential cross sections. In the body-fixed formulation the scattering amplitude is [10]

$$f(j^{m}_{j}, v^{\prime} \neq jm_{j} v | \mathbf{\hat{r}}) = \sum_{J} \sum_{\Omega'} \sum_{\ell'} (i)^{j-j'+1} (-1)^{m}_{j'} - m_{j} (2J+1) \pi^{1/2}$$

$$[(2\ell'+1)k_{jv}k_{j'v'}]^{-1/2} T^{J} (j^{\prime}\Omega' v^{\prime} | jm_{j} v)$$

$$C(Jj^{\prime}\ell'; \Omega', -\Omega',) C(Jj^{\prime}\ell'; m_{j}, -m_{j'}, m_{j} - m_{j'}) \qquad (3-29)$$

$$Y_{\ell', m_{j}}^{(r')} - M_{j'}^{(r')}$$

where the $C(Jj^{l};m_{j},-m_{j},m_{j},m_{j})$ are the Clebsch-Gordan coefficients[42] and $\hat{r} = (\theta_{r},\phi_{r})$ are the angles associated with the space-fixed coordinate system. The transition matrix \underline{T}^{J} in Eq. (3-30) is defined as,

$$T^{J}(j \Omega v | j - \Omega v) = \delta_{vv} \delta_{jj} \delta_{\Omega}, -\Omega - S^{J}(j \Omega v | j - \Omega v)$$

$$= \delta_{vv} \delta_{jj} \delta_{\Omega}, -\Omega - \langle j \Omega | S_{vv}^{\overline{j}\lambda}(\theta) | j\Omega \rangle (-1)^{J - \lambda} i^{j + j}$$
(3-30)

Substitution of Eq. (3-30) into the scattering amplitude Eq.(3-29) and using the properties [43] of the Clebsch-Gordan coefficients the sum over the total angular momentum J can be done analytically to give,

$$f(j^{m_{j}} \sim (+ jm_{j}) | \hat{r}) = \frac{(-1)^{j+j^{+}+1}}{2i \left[k_{j} \sqrt{k_{j}} \sqrt{-j}\right]^{1/2}} \left\{ \sum_{\ell} (2\ell^{+}+1) P_{\ell^{-}}(\cos \theta_{r}) \right]$$
$$\left[\delta_{\nu\nu} \delta_{jj} - (j^{-}-m_{j}) | s_{\nu\nu}^{j\lambda}(\theta) | j-m_{j} > (-1)^{\ell^{-}-\lambda} \right] \right\} \delta_{m_{j}} m_{j}, \qquad (3-31)$$
$$= (-1)^{j+j^{+}+1} \langle jm_{j} | f^{j\lambda}(\sqrt{+\nu} | \hat{r}; \theta) | j^{-}m_{j} > (-1)^{\ell^{-}-\lambda} = (-1)^{j+j^{-}+1} \langle jm_{j} | f^{j\lambda}(\sqrt{+\nu} | \hat{r}; \theta) | j^{-}m_{j} > (-1)^{\ell^{-}-\lambda} = (-1)^{j+j^{-}+1} \langle jm_{j} | f^{j\lambda}(\sqrt{+\nu} | \hat{r}; \theta) | j^{-}m_{j} > (-1)^{\ell^{-}-\lambda} = (-1)^{j+j^{-}+1} \langle jm_{j} | f^{j\lambda}(\sqrt{+\nu} | \hat{r}; \theta) | j^{-}m_{j} > (-1)^{\ell^{-}-\lambda} = (-1)^{j+j^{-}+1} \langle jm_{j} | f^{j\lambda}(\sqrt{+\nu} | \hat{r}; \theta) | j^{-}m_{j} > (-1)^{\ell^{-}-\lambda} = (-1)^{j+j^{-}+1} \langle jm_{j} | f^{j\lambda}(\sqrt{+\nu} | \hat{r}; \theta) | j^{-}m_{j} > (-1)^{\ell^{-}-\lambda} = (-1)^{j+j^{-}+1} \langle jm_{j} | f^{j\lambda}(\sqrt{+\nu} | \hat{r}; \theta) | j^{-}m_{j} > (-1)^{\ell^{-}-\lambda} = (-1)^{j+j^{-}+1} \langle jm_{j} | f^{j\lambda}(\sqrt{+\nu} | \hat{r}; \theta) | j^{-}m_{j} > (-1)^{\ell^{-}-\lambda} = (-1)^{$$

where the central field scattering amplitude (which parametrically depends upon the angle $\theta)$ is

$$\overline{f^{j\lambda}}(v \leftrightarrow |\hat{r};\theta) = \frac{1}{2i \left[k_{j} v k_{j\nu}\right]^{1/2}} \sum_{\ell} (2\ell+1) P_{\ell}(\cos \theta_{r}) T_{\nu\nu}^{j\lambda}(\theta) \quad (3-32)$$

and

$$T_{\nu\nu}^{\overline{j}\lambda}(\theta) = \delta_{\nu\nu} - (-1)^{\ell-\lambda} S_{\nu\nu}^{\overline{j}\ell}(\theta)$$
(3-33)

are the elements of the transition matrix $\mathtt{T}^{\overline{j}\lambda}(\theta)$.

The degeneracy averaged differential cross section (scattering intensity) is [10]

$$\begin{split} \mathbf{I}(\mathbf{j}^{\prime}\mathbf{v}^{\prime}\mathbf{+}\mathbf{j}\mathbf{v}|\mathbf{\hat{r}}) &= \frac{1}{2\mathbf{j}+1} \frac{\mathbf{k}_{\mathbf{j}}^{\prime}\mathbf{v}^{\prime}}{\mathbf{k}_{\mathbf{j}}\mathbf{v}} \sum_{\mathbf{m}_{\mathbf{j}}} \sum_{\mathbf{m}_{\mathbf{j}}} \left|\mathbf{f}(\mathbf{j}^{\prime}\mathbf{m}_{\mathbf{j}}^{\prime}\mathbf{v}^{\prime}\mathbf{+}\mathbf{j}\mathbf{m}_{\mathbf{j}}^{\prime}\mathbf{v}|\mathbf{\hat{r}}^{\prime})\right|^{2} \\ &= \frac{1}{2\mathbf{j}+1} \frac{\mathbf{k}_{\mathbf{j}}^{\prime}\mathbf{v}^{\prime}}{\mathbf{k}_{\mathbf{j}}\mathbf{v}} \sum_{\mathbf{m}_{\mathbf{j}}} \left|\langle \mathbf{j}\mathbf{m}_{\mathbf{j}}^{\prime} | \mathbf{f}^{\mathbf{j}}\mathbf{\lambda} \left(\mathbf{v}^{\prime}\mathbf{+}\mathbf{v} | \mathbf{\hat{r}}^{\prime}; \theta\right) |\mathbf{j}^{\prime}\mathbf{m}_{\mathbf{j}}^{\prime}\rangle\right|^{2} \tag{3-34}$$

If we also assume that \overline{j} and λ are independent of j' we can sum the degeneracy averaged differential cross section over the final rotational states using the completeness relation [40]

$$1 = \sum_{j} \sum_{m_{j}} |j m_{j} \rangle \langle j m_{j} |$$
(3-35)

to give

$$I(\mathbf{v} \neq \mathbf{j} \mathbf{v} | \mathbf{\hat{r}}) = \frac{1}{(2\mathbf{j}+1)} \sum_{\mathbf{m}_{\mathbf{j}}} \langle \mathbf{j} \mathbf{m}_{\mathbf{j}} | \frac{1}{4k_{\mathbf{j}}^{2}} | \sum_{\boldsymbol{\ell}} (2\boldsymbol{\ell} + 1) P_{\boldsymbol{\ell}} (\cos \theta_{\mathbf{r}}) T_{\mathbf{v}\mathbf{v}}^{\mathbf{j}\boldsymbol{\lambda}} (\theta) |^{2} | \mathbf{j} \mathbf{m}_{\mathbf{j}} \rangle$$

$$(3-36)$$

This can be further simplified by use of the spherical harmonic addition theorem [44],

$$\left(\frac{2j+1}{4\pi}\right)^{1/2} Y_{j0}(\theta,0) = \sum_{\substack{m_j \\ j}} Y_{jm_j}^*(\theta_1,\phi_1) Y_{jm_j}(\theta_2,\phi_2),$$
 (3-37)

[where θ is the angle between the vectors \hat{r}_1 and \hat{r}_2 defined by the angles (θ_1, ϕ_1) and (θ_2, ϕ_2) , respectively, (for the present case $\theta_1 = \theta_2$ and $\phi_1 = \phi_2$ and hence $\theta = 0$)] giving

$$I(v' \neq jv | \hat{\mathbf{r}}) = \frac{1}{8k_{jv}^2} \int_0^{\pi} \left| \sum_{k} (2k'+1) P_k (\cos \theta_{\hat{\mathbf{r}}}) T_{vv}^{\overline{j}\lambda}(\theta) \right|^2 \sin \theta \, d\theta \quad (3-38)$$

where we have used [45]

$$Y_{j0}(0,0) = \left(\frac{2j+1}{4\pi}\right)^{1/2}$$
(3-39)

in deriving Eq. (3-38). The following equations and Eq. (3-38) are independent of j if \overline{j} and λ are taken to be independent of j.

The differential cross section in Eq. (3-38) can be written as an average over the central field differential cross section which also parametrically depends upon the angle θ ,

$$I(v^{\prime} \neq jv | \hat{r}) = \frac{1}{2} \int_{0}^{\pi} I(v^{\prime} \neq jv | \hat{r}^{\prime}; \theta) \sin \theta \, d\theta \qquad (3-40)$$

with the central field differential cross section defined as,

$$I(\mathbf{v}' \neq \mathbf{j}\mathbf{v}|\hat{\mathbf{r}};\boldsymbol{\theta}) = \frac{1}{4k_{\mathbf{j}\mathbf{v}}^2} \left| \sum_{\boldsymbol{\ell}} (2\boldsymbol{\ell}' + 1) P_{\boldsymbol{\ell}} (\cos \theta_{\mathbf{r}}) T_{\mathbf{v}\mathbf{v}}^{\mathbf{j}\boldsymbol{\lambda}} (\boldsymbol{\theta}) \right|^2, \quad (3-41)$$

The total cross section can also be written as an average over the central field total cross sections as,

$$\sigma(v' \neq jv) = \frac{1}{2} \int_{0}^{\pi} \sigma(v' \neq jv; \theta) \sin\theta \ d\theta \qquad (3-42)$$

where

$$\sigma(\nu' \neq j\nu;\theta) = \int_{0}^{2\pi} \int_{0}^{\pi} I(\nu' \neq j\nu | \hat{r}';\theta) \sin\theta'_{r} d\theta'_{r} d\phi'_{r}$$
(3-43)

with substitution of Eq. (3-41) into Eq. (3-43) and using the orthogonality [46] of the Legendre polynomials gives the usual central field expression for the total cross section,

$$\sigma(v^{\prime} \neq jv;\theta) = \frac{\pi}{k_{jv}^2} \sum_{\ell} (2\ell^{\prime}+1) |T_{vv}^{j\lambda}(\theta)|^2.$$
(3-44)

As seen from the simplified expressions given above a physically reasonable choice of λ is

$$\lambda = \ell^{2}. \qquad (3-45)$$

Also since \overline{j} mainly affects the energy levels in Eq. (3-10) a physically reasonable choice for \overline{j} is

$$\overline{j} = (j + j')/2$$
 (3-46)

but for molecules with a small rotational constant the $S^{j\lambda}(\theta)$ matrix will almost be independent of \overline{j} and we can choose \overline{j} as a constant independent of j and j'.

After obtaining the total cross sections $\sigma(\nu' \neq j\nu)$ the vibrational relaxation rate constants $k_{\nu' \neq \nu}(T)$ are evaluated using [47],

$$k_{v \leftarrow v}(T) = \left(\frac{8}{\pi \mu k_B^3 T} \right)^{1/2} \sum_{j} p_j(T) \int_0^\infty \sigma(v \leftarrow jv) Ee^{-E/k_B T} dE \qquad (3-47)$$

where $p_j(T)$ is the probability of being in the j'th rotational state at a temperature T, E is the incident relative kinetic energy and k_B is Boltzmann constant. From the detailed balance relation [48],

$$k_{v \leftarrow v}(T) = e^{-(E_{ov} - E_{ov})/k_B T} k_{v \leftarrow v}(T)$$
(3-48)

the corresponding excitation rates can then be obtained.

B. Calculations

There have been several methods proposed for numerical solution of the coupled scattering equations. The two most promising methods known are the Sams and Kouri [17] integral equations method, and the Gordon [18] piecewise analytic function method. All of the close-coupling calculations reported herein have used a combination of both methods in order to utilize the advantages of each.

It was found that for large values of the angular momentum $(\lambda = \ell^{\prime} > 200)$ and small kinetic energies [E < 25,000°K (relative to the ground state vibrational line of CO)] that the Distorted Wave [49] approximation correctly predicted the elements of the S-matrix, $S^{j\lambda}(\theta)$, to within 5%. We therefore used it for the scattering calculations in this range. Close-coupling was used for all values of the angular momentum at high energies (E > 25,000°K) and also for all of the energies when the angular momentum was small ($\lambda = \ell^{\prime} \le 200$).

i. Integral Equations

The Sams and Kouri [17] integral equations method will be presented for the single channel case to keep the notation simple. Generalization to the multi-channel problem is straightforward.

The single channel scattering solution $g_0(r)$, where

$$\left[\frac{d^2}{dr^2} + k^2 - \frac{\ell(\ell+1)}{r^2}\right] g_{\ell}(r) = U(r) g_{\ell}(r)$$
(3-49)

is subject to the usual scattering boundary conditions,

$$g_0(0) = 0$$
 (3-50)

and

$$g_{\ell}(\mathbf{r}) \xrightarrow{\mathbf{r} \to \infty} e^{-i\left(k\mathbf{r} - \frac{\ell\pi}{2}\right)} - S^{\ell} e^{i\left(k\mathbf{r} - \frac{\ell\pi}{2}\right)}$$
(3-51)

where S^{k} is the scattering matrix,

$$S^{\ell} = e^{2i\eta_{\ell}}, \qquad (3-52)$$

and the n_{l} are the phase shifts. The solution $g_{l}(r)$ of Eq. (3-49) can then be written as a sum of a homogeneous $g_{l}^{h}(r)$, and a particular $g_{l}^{p}(r)$ solution,

$$g_{\ell}(\mathbf{r}) = g_{\ell}^{h}(\mathbf{r}) + g_{\ell}^{p}(\mathbf{r}) \qquad (3-53)$$

where the homogeneous solution satisfies,

$$\left[\frac{d^2}{dr^2} + k^2 - \frac{\ell(\ell+1)}{r^2}\right] g^h_{\ell}(r) = 0$$
 (3-54)

and the particular solution is any nontrivial solution of Eq. (3-49). The homogeneous solution can be written in terms of the Riccatti-Bessel function $\hat{j}_{l}(\mathbf{r})$ and the Riccatti-Hankel [30] function of the first kind $h_{g}^{(1)}(\mathbf{r})$ as,

$$g_{\ell}^{h}(r) = C_{1}\hat{j}_{\ell}(kr) + C_{2}\hat{h}_{\ell}^{(1)}(kr)$$
 (3-55)

where the constants C_1 and C_2 are determined from the boundary conditions on $g_{\ell}(r)$. The particular solution of Eq. (3-49) can be obtained using Green's functions [50] or equivalently by the method of variation of parameters [50]. Using the method of variation of parameters gives,

$$g_{\ell}^{p}(\mathbf{r}) = \int_{0}^{\mathbf{r}} \frac{\hat{j}_{\ell}(\mathbf{kr}) \hat{h}_{\ell}^{(1)}(\mathbf{kr}) - \hat{j}_{\ell}(\mathbf{kr}') \hat{h}_{\ell}^{(1)}(\mathbf{kr})}{W[\hat{h}_{\ell}^{(1)}(\mathbf{kr}), \hat{j}_{\ell}(\mathbf{kr})]}$$
(3-56)
× U(r') $g_{\ell}^{p}(\mathbf{r}') d\mathbf{r}'$

for the particular solution, where W is the Wronskian,

$$W[\hat{h}_{\ell}^{(1)}(kr), \hat{j}_{\ell}(kr)] = \hat{h}_{\ell}^{(1)}(kr)\frac{d}{dr}\hat{j}_{\ell}(kr) - \hat{j}_{\ell}(kr)\frac{d}{dr}\hat{h}_{\ell}^{(1)}(kr)$$
(3-57)

which can be easily evaluated to give,

$$W[\hat{j}_{l}(kr), \hat{h}_{l}^{(1)}(kr)] = -ik.$$
 (3-58)

Since $\frac{i}{k}g_{\ell}(r)$ is also a particular solution of Eq. (3-49) the solution $g_{\ell}(r)$ can be written as,

$$g_{\ell}(\mathbf{r}) = g_{\ell}^{h}(\mathbf{r}) + \hat{j}_{\ell}(k\mathbf{r}) \int_{0}^{\mathbf{r}} \hat{h}_{\ell}^{(1)}(k\mathbf{r}') \quad U(\mathbf{r}') \ g_{\ell}(\mathbf{r}') d\mathbf{r}'$$
$$- \hat{h}_{\ell}^{(1)}(k\mathbf{r}') \int_{0}^{\mathbf{r}} \hat{j}_{\ell}(k\mathbf{r}') \ U(\mathbf{r}') \ g_{\ell}(\mathbf{r}') \ d\mathbf{r}' \ . \tag{3-59}$$

The boundary condition at r = 0, Eq. (3-50), then gives

$$C_2 = 0.$$
 (3-60)

Since the solution is zero at r = 0, the asymptotic boundary condition simply scales the solution; hence,

$$\overline{g}_{\ell}(\mathbf{r}) = \hat{j}_{\ell}(\mathbf{kr}) + \hat{j}_{\ell}(\mathbf{kr}) \int_{0}^{r} \hat{h}_{\ell}^{(1)}(\mathbf{kr}') \ U(\mathbf{r}') \ \overline{g}_{\ell}(\mathbf{r}') \ d\mathbf{r}'$$

$$- \hat{h}_{\ell}^{(1)}(\mathbf{kr}) \int_{0}^{r} \hat{j}_{\ell}(\mathbf{kr}') \ U(\mathbf{r}') \ \overline{g}_{\ell}(\mathbf{r}') \ d\mathbf{r} \qquad (3-61)$$

where,

$$\overline{g}_{\varrho}(\mathbf{r}) = C g_{\varrho}(\mathbf{r}). \qquad (3-62)$$

A formal expression for the constant C in Eq. (3-62) can be obtained by using the asymptotic boundary condition to give

$$C = 2i / \left\{ 1 + \int_{0}^{\infty} \left[\hat{h}_{\ell}^{(1)}(kr') + 2 \hat{j}_{\ell}(kr') \right] U(r') \overline{g}_{\ell}(r') dr' \right\}.$$
(3-63)

where we have used the asymptotic behavior of the Riccatti-Bessel [30],

$$\hat{j}_{k}(kr) \xrightarrow[r \to \infty]{} \sin\left(kr - \frac{k\pi}{2}\right)$$
 (3-64)

and the Riccatti-Hankel [30],

$$\hat{h}_{\ell}^{(1)}(kr) \xrightarrow[r \to \infty]{} -i e^{i\left(kr - \frac{\ell\pi}{2}\right)}$$
(3-65)

functions. In practice the constant C is never determined using Eq. (3-63), but by directly scaling the solution $\overline{g}_{\ell}(\mathbf{r})$ at some large distance to match the asymptotic boundary condition.

At first glance it looks as though Eq. (3-61) would have to be solved iteratively since $\overline{g}_{\ell}(\mathbf{r})$ is on both sides of the equation. However, replacing the integrals by a numerical quadrature gives,

$$\overline{g}_{\ell}(\mathbf{r}_{i}) = j_{\ell}(\mathbf{kr}_{i}) + \hat{j}_{\ell}(\mathbf{kr}_{i}) \sum_{j=1}^{i} \hat{h}_{\ell}^{(1)}(\mathbf{kr}_{j}) U(\mathbf{r}_{j}) \overline{g}_{\ell}(\mathbf{r}_{j}) W_{j}$$
(3-66)
$$- \hat{h}_{\ell}^{(1)}(\mathbf{kr}_{i}) \sum_{j=1}^{i} \hat{j}_{\ell}(\mathbf{kr}_{j}) U(\mathbf{r}_{j}) \overline{g}_{\ell}(\mathbf{r}_{j}) W_{j}$$

and one sees that the i'th term on the right-hand side cancels exactly giving,

$$\overline{g}_{\ell}(\mathbf{r}_{i}) = \hat{j}_{\ell}(\mathbf{kr}_{i}) + \hat{j}_{\ell}(\mathbf{kr}_{i}) \sum_{j=1}^{i-1} \hat{h}_{\ell}^{(1)}(\mathbf{kr}_{j}) U(\mathbf{r}_{j}) \overline{g}_{\ell}(\mathbf{r}_{j}) W_{j}$$
(3-67)
$$- \hat{h}_{\ell}^{(1)}(\mathbf{kr}_{i}) \sum_{j=1}^{i-1} \hat{j}_{\ell}(\mathbf{kr}_{j}) U(\mathbf{r}_{j}) \overline{g}_{\ell}(\mathbf{r}_{j}) W_{j}$$

The weights w_j in Eqs. (3-66) and (3-67) are the weights associated with a particular quadrature (i.e., Trapezoidal [30], Simpson [30], etc.). The integral equations method has the advantage that it requires little computational time per step, however the method integrates an oscillatory solution and hence requires a large number of steps. It also has a

50

disadvantage for high &-values since it must calculate the Riccatti-Bessel [30] and Riccatii-Hankel [30] functions which are usually obtained by recursion. For coupled channels with the same & values the last disadvantage can be essentially eliminated if one numerically integrates the homogeneous equation Eq. (3-54) to obtain the Riccatti-Bessel [30] and Riccatti-Hankel [30] functions.

ii. Piecewise Analytic Functions

In Gordon's [18] piecewise analytic functions method what one does is replace the effective potential

$$U_{l}^{eff}(r) = U(r) + \frac{l(l+1)}{r^{2}}$$
 (3-68)

by a reference potential $U_{\varrho}^{i}(r)$ in a piecewise fashion

$$U_{l}^{eff}(r) \rightarrow U_{l}^{i}(r) \quad r_{i} < r < r_{i+1}$$
 (3-69)

The reference potential is chosen such that it accurately fits the effective potential in the given region $r_i < r < r_{i+1}$, and the solutions g_{ℓ}^i

$$\left[\frac{d^2}{dr^2} + k^2 - U_{\ell}^{i}(r)\right] g_{\ell}^{i}(r) = 0$$
 (3-70)

are known analytically. Then the scattering solution $g_{l}(r)$ is formed by matching the reference solution and its derivative across the boundaries of the regions

$$g_{l}^{i}(r_{i}) = g_{l}^{i+1}(r_{i})$$
 (3-71)

and

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{r}} g_{\ell}^{i}(\mathbf{r}) \Big|_{\mathbf{r}=\mathbf{r}_{i}} = \frac{\mathrm{d}}{\mathrm{d}\mathbf{r}} g_{\ell}^{i+1}(\mathbf{r}) \Big|_{\mathbf{r}=\mathbf{r}_{i}}$$
(3-72)

The r_i are determined by a perturbative procedure [18] resulting in unequal step sizes which is a major advantage of the method as discussed in iii. The method is simply generalized to the many channel case by the diagonalizing of the matrix \underline{W} whose elements are,

$$W_{VV} = k^2 - \frac{\ell(\ell+1)}{r^2} - U_{VV}(r)$$
 (3-73)

in the region of interest and then fitting the eigenvalues with the reference potential and hence obtaining the reference solutions g_{l}^{i} and then transforming back to get the scattering solution. This is a disadvantage since the diagonalization of a matrix is a time consuming process.

iii. Joining of Both Methods

Since the Gordon piecewise linear program [18]can take large step sizes when the potential is varying slowly (large r) it is very efficient in that region. In the Sams and Kouri [17] method however, one is limited by the De Broglie wavelength and not the smoothness of the potential hence it is inefficient where the potential varies slowly. However, when the potential is varying rapidly (small r) the Gordon Program [18]requires a large number of steps and hence is less efficient than the Sams and Kouri [17] procedure. This is why we chose to use the Sams and Kouri [17] method at short distances and then switch over to Gordon Program [18] at large distances. Using this procedure we were able to solve the coupled scattering equations 5 times as fast as either method alone.

For distances less than 14.0 a.u. the Sams and Kouri [17] method was used with a step size of .005 a.u. which required about 3000 steps. For distances greater than 14.0 a.u. the Gordon Program [18] was used with all of the tolerance parameters set to 1.0×10^{-12} except for TOLHI which was set at 5.0×10^{-7} . TOLHI governs the step size and hence the accuracy. Using these parameters we were able to calculate $|S_{VV}^{\ell}|^2$ within a few percent when they had magnitudes as low as 10^{-11} . Since the Sams and Kouri [17] algorithm does not use the first derivative of the scattering solution whereas the Gordon Program does it was

necessary to calculate the first derivative of the solution at the switch over point 14.0 a.u. The first derivative could be propagated along with the solution in the Sams and Kouri [17] procedure with little additional computational effort. Also the derivative could be calculated very accurately using the Sloan formula [51],

$$\frac{d}{dr} \overline{g}_{\ell}(r_{i}) = \frac{1}{2h} \left[9 \overline{g}_{\ell}(r_{i}) - 16 \overline{g}_{\ell}(r_{i-1}) + 7 \overline{g}_{\ell}(r_{i-2}) \right]$$
(3-74)
$$- \frac{h}{3} \left[8 \overline{g}_{\ell}(r_{i-1}) \left(\frac{\ell(\ell+1)}{r_{i-1}^{2}} + U(r_{i-1}) + k^{2} \right) + \overline{g}_{\ell}(r_{i-1}) \left(\frac{\ell(\ell+1)}{r_{i-2}^{2}} + U(r_{i-2}) + k^{2} \right) \right]$$

where h is the step size. Since the derivative is needed only at the switchover point, we chose this latter procedure since it is slightly faster numerically.

iv. Vibrational Wavefunctions

The vibrational wavefunctions $\chi_{j\nu}(R)$ [solutions of Eq. (3-9) with the Simons-Parr-Finlan [52] interatomic potential V(R)] of CO were obtained using the variational principle with the first 20 harmonic oscillators as a basis set. The harmonic oscillators have their origin at

$$R_{o} = (R_{max} + R_{min})/2 = 1.183 \text{ Å}$$
 (3-75)

where R_{min} and R_{max} are the inner and outer Rydberg-Klein-Reese [53] (RKR) turning points for the 9th vibrational level of CO. The force constant is chosen so that the eigenvalue of the 9th harmonic oscillator is equal to the experimental energy of the 9th vibrational level of CO. We obtained the first 10 vibrational energies accurate to within .0004%. Since the intermolecular potential was expanded in a power series about the equilibrium position Re, of CO it was necessary to calculate the coupling constants.

$$C_{\overline{j}\nu'\overline{j}\nu}^{n} = \langle \overline{j}\nu | (R-R_{e})^{m} | \overline{j}\nu' \rangle m = 0,1,2 \qquad (3-76)$$

These constants were calculated using a 50 point Gauss-Hermite quadrature and are accurate to at least 5 significant figures.

C. Results and Comparison with Experiment

Because the final rate constants involve averaging cross sections calculated at many energies and each cross section involves summing transition probabilities calculated at many values of the angular momentum & we will only give a few representative detailed results here. In Fig. 8 a plot is made of the opacity function $[(2l+1)|S_{01}^{l}|^{2}]$ (after averaging over the angle θ) verses the angular momentum l for the 0+1 transition at a relative incident energy $E/k_p = 1,915$ ^OK. Opacity plots are very interesting since the area under the curve is proportional to the cross section and the impact parameter (b=(l+1/2)/k, where $k^2=2\mu E/h^2$ and E is the relative incident energy) is a measure of the closeness of the collision, i.e., small impact parameters imply a close collision. The maximum on the opacity curve corresponds to an impact parameter of 4.1 a.u. This indicates that at this relative kinetic energy the main contribution is due to the long range attractive part of the potential. The dependence upon the angular momentum is quite smooth and this plot is typical for all of the low energy scattering.

The opacity plot in Fig. 9 is at a relative-incident kinetic energy E/k_B of 20,915 ^{O}K for the 0+1 transition. The dependence upon the angular momentum & is very smooth. This plot is typical for all scattering energies above 8,000 ^{O}K . The maximum occurs at an impact parameter b of 1.1 a.u. which implies close collisions. The transition probability is totally dominated by the repulsive wall of the potential.

In Figs. 10 and 11 we have made opacity plots for the 1+2 and 0+2 transitions respectively at a relative incident (ν =2) E/k_B of 17,869 ^OK. It is seen that these plots are very similiar to the 0+1 transition given in Fig. 9, but the transition probabilities are smaller because the relative kinetic energy has decreased. The 0+2 transition in Fig. 11 has a very small cross section and is down by a factor of 10⁵

Fig. 9. -- Opacity function for the 0+1 transition at $E/k_B = 20,915$ ^{O}K

Fig. 10. -- Opacity function for the 1+2 transition at $E/k_{\rm B}$ = 17,869 $^{\rm O}{\rm K}$

Fig. 11. -- Opacity function for the 0+2 transition at $E/k_{\rm B}$ = 17,869 $^{\rm O}{\rm K}$

when compared to the 0+1 transition. Also, the 0+2 transition has its maximum at a smaller impact parameter (b=0.77) than the 1+2 transition which implies that closer collisions are required for the 0+2 transition as would be expected.

In Figs. 12-15 plots are made of the total cross section $\sigma(0+1;\theta)$ (which parametrically depends upon the angle θ) for the 0+1 transition at 4 different energies as a function of the angle θ . It is seen that the angular dependence is quite smooth especially for the higher energies. For the higher energies it is noticed that the plots are all very similiar and that the maximum transition probability is near 90° which clearly shows that the major contribution comes from perpendicular collisions. Thus, the well-known simple models which assume that vibrational transitions are predominately caused by collinear collisions are simply not valid for this system. These results are typical of all scattering energies. As the energy is decreased the maximum shifts off 90° but never to a collinear configuration.

Since this angle dependence is somewhat surprising let us consider why it occurs. In Figs. 16-18 the coefficients, $V_m(r,\theta)$ (m=0, 1 or 2), in the expansion of the potential

$$V(r,\theta,R) = \sum_{m=0}^{2} V_{m}(r,\theta) (R-R_{e})^{m}$$
, (3-77)

in powers of the vibrational coordinate, have been plotted as a function of the distance r for 3 different angles. It is seen that for $\theta=97.2^{\circ}$ the m=1 and m=2 contributions are negative. That makes this the most favorable angle for vibrational transitions for the following reasons: First, it decreases the slope and hence allows more penetration into the barrier. Secondly, since the diagonal vibrational coupling matrix element [Eq. (3-76)] is larger for the higher vibrational state, the slope and magnitude of the diagonal potential matrix element [Eq. (3-12)] is smaller for the upper vibrational state causing the classical turning points to be closer together, giving more overlap and a greater transition probability. These explanations can also be shown [54] to be correct by using the distorted wave [49] approximation (which

58

Fig. 12, -- The parametric θ dependence of the IOS total cross section for the 0+1 transition at E/k_B = 4,915 $^{\rm o}{\rm K}$

Fig. 13. -- The parametric θ dependence of the IOS total cross section for the 0+1 transition at E/k_B = 12,915 $^{\rm 0}{\rm K}$

Fig. 14. -- The parametric θ dependence of the IOS total cross section for the 0+1 transition at $E/k_B = 20,915$ K

2.5

2.0

1.5

1.0

0.5

0.0

0

 $\sigma(0+1;\theta) \times 10^2 (\text{\AA}^2)$

90

 θ (degrees)

135

180

45

Fig. 16. -- The vibrational expansion coefficients of the Ar-CO potential at θ = 11.2 $^{\circ}$

Fig. 17. -- The vibrational expansion coefficients of the Ar-CO potential at θ = 97.2 $^{\circ}$

Fig. 18, -- The vibrational expansion coefficients of the Ar-CO potential at θ = 168.2 $^{\rm O}$

correctly but qualitatively gives the same results) and evaluating the transition matrix elements using the saddle point method [55]. This also shows that the transition probabilities are not only very sensitive to the sign of the perturbing potentials $(V_m(r,\theta), m=1 \text{ or } 2)$, through their diagonal matrix elements, but also to the ratio of the slope of the perturbing potential to its magnitude $(|V_m(r,\theta)/V_m(r,\theta)|, m=1 \text{ or } 2)$ where the larger this ratio the larger the transition probability. This ratio is also largest at 97.2°. Thus, we see why the vibrational transition probabilities are very sensitive to the potential in this region.

Plotted in Fig. 19 are the total angle averaged cross sections (for $\Delta v=1$ transitions) versus the relative incident kinetic energy. The cross sections increase more rapidly with v than one would expect from simple harmonic models. The additional increase is attributed to the closer spacing of the CO vibrational levels at higher vibrational quanta. Even at the highest scattering energies the cross sections have not reached a maximum and are well below the gas kinetic cross section in magnitude.

In Fig. 20 a comparison is made of our calculated vibrational relaxation rates (--- solid line) with the experimental values. The dashed line through the experimental values is a fit to the experiments using the Landau-Teller theory which predicts that ln k_m (T) vs. $T^{-1/3}$ should be a straight line. It is clear from the figure that our cross sections are considerably too small. This discrepancy can be caused by one of two reasons or a combination of both. First, in using the infinite order sudden approximation for the rotations we neglected the differences in the rotational energies, and large rotational transitions could reduce the effective energy gap between the vibrational channels; hence, larger transition probabilities would be expected. If this were the sole cause our relaxation rates would be better at low temperatures (since at higher temperatures the larger j states are more highly populated and the difference in rotational energies for the same Δj transition would be larger causing a smaller effective vibrational energy gap) which is opposite to what is observed in our calculated rates, Although we do not believe this to be the case further calculations in which the

vibrational energy gap has been reduced to test this possibility are necessary. The second and we feel most likely reason for the discrepancy could come from inaccuracies in the short range electron gas potential. As mentioned earlier our transition probabilities are very sensitive to the potential and self consistant field calculations are currently being performed to test the short range electron gas potential and hence this hypothesis.

Fig. 19. -- Energy dependence of the total cross sections for the $\Delta\nu$ = ± 1 transitions

Fig. 20. -- Comparison of the calculated and experimental vibrational relaxation rates.

IV. SUMMARY AND CONCLUSIONS

We have determined the angle, distance and vibration dependence of the Ar-CO intermolecular potential using a modification [3] of the electron gas model [1-4]. The long range behavior of the potential was determined from accurate van der Waals coefficients which were calculated from experimental refractive index data using the Pade^{*} approximant methods of Langhoff and Karplus [13]. These are presently the most accurate van der Waals coefficients for the interactions of CO.

We have obtained simplified expressions for the scattering amplitude and differential cross section within the infinite order sudden approximation. Then using the infinite order sudden approximation for the rotations in the Ar-CO system we solved the coupled vibrational scattering equations using a combination of the Sams and Kouri [17] algorithm (for short distances) and the Gordon [18] Airy function expansion method (for large distances) at a number of energies. and angular momentum values. Total cross sections were then calculated at several energies in order to determine the vibrational relaxation rates. It was found that our calculated rates are very sensitive to the short range potential and that they were much smaller that the experimental values. Indicating that extreme care should be taken in the classical turning point region, where a limited amount of configuration interaction or self consistant field calculations should be performed and used to obtain an α -type parameter with which to scale the electron gas exchange energy, which will also be a very useful test of the accuracy of the potential.

In conclusion we beleive that this type of approach should be very useful in determining interactions of systems similiar to the Ar-CO system, i.e., systems in which the molecule has a small rotational constant and the reduced mass is large.

LIST OF REFERENCES

- V. L. Gaydaenko and V. K. Nikulin, Chem. Phys. Lett. 7, 360 (1970);
 V. K. Nikulin, Zh. Tekh. Fiz. 41, 41 (1971) [Sov. Phys. Tech. Phys. 16, 28 (1971)]. For a history of the method see V. K. Nikulin and Yu. N. Tsarev, Chem. Phys. 10, 433 (1975).
- R. G. Gordon and Y. S. Kim, J. Chem. Phys. 56, 3122 (1972); Y. S. Kim and R. G. Gordon, J. Chem. Phys. 60, 1842 (1974).
- 3. J. S. Cohen and R. T Pack, J. Chem. Phys. 61, 2372 (1974).
- 4. Y. S. Kim and R. G. Gordon, J. Chem. Phys. 61, 1 (1974).
- 5. G. A. Parker, R. L. Snow, and R. T Pack (unpublished).
- G. A. Parker, R. L. Snow, and R. T Pack, Program No. 305 (1976), Quantum Chemistry Program Exchange, University of Indiana, Bloomington, Indiana 47401.
- A. M. Arthurs and A. Dalgarno, Proc. Roy. Soc. Lond. <u>A</u> 256, 540 (1960).
- T. P. Tsien and R. T Pack, Chem. Phys. Lett. <u>6</u>, 54 (1970); <u>8</u>, 579 (1971).
- 9. .T. P. Tsien, G. A. Parker, and R. T Pack, J. Chem. Phys. <u>59</u>, 5373 (1973).
- 10. R. T Pack, J. Chem. Phys. 60, 633 (1974).
- 11. D. Secrest, J. Chem. Phys. 62, 710 (1975).
- 12. L. W. Hunter, J. Chem. Phys. 62, 2855 (1975).
- P. W. Langhoff and M. Karplus, J. Opt. Soc. Am. 59, 863 (1969);
 P. W. Langhoff, J. Chem. Phys. 57, 2604 (1972).
- 14. R. T Pack, J. Chem. Phys. 61, 2091 (1974).
- 15. G. A. Parker and R. T Pack, J. Chem. Phys. 64, 2010 (1976).
- 16. G. C. Nielson, G. A. Parker, and R. T Pack, J. Chem. Phys. <u>64</u>, 2055 (1976).

- W. N. Sams and D. J. Kouri, J. Chem. Phys. 51, 4809 (1969); W. N. Sams and D. J. Kouri, J. Chem. Phys. 51, 4815 (1969).
- R. G. Gordon, J. Chem. Phys. <u>51</u>, 14 (1969); R. G. Gordon, Methods in Computat. Phys. <u>10</u>, <u>81</u> (1971); Program 187, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, Indiana 47401.
- 19. W. J. Hooker and R. C. Millikan, J. Chem. Phys. 38, 214 (1963).
- 20. K. F. Herzfeld and T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic Press, New York, 1959).
- 21. A. L. Russo, J. Chem. Phys. 47, 5201 (1967).
- 22. T. Just and P. Roth, J. Chem. Phys. 55, 2395 (1971).
- 23. W. H. Green and J. K. Hancock, J. Chem. Phys. 59, 4326 (1973).
- 24. G. A. Parker, R. L. Snow, and R. T Pack, Chem. Phys. Lett. <u>33</u>, 399 (1975).
- 25. G. A. Parker, R. L. Snow, and R. T Pack, J. Chem. Phys. <u>64</u>, 1668 (1975).
- 26. A. I. M. Rae, Chem. Phys. Lett. 18, 574 (1973).
- 27. J. C. Slater and K. H. Johnson, Phys. B 5, 844 (1972); J. C. Slater, Phys. Rev. 81, 385 (1851); 82, 538 (1951).
- 28. E. Clementi, IBM J. Res. Dev. Suppl. 9, 2 (1965).
- 29. A. D. Mclean and M. Yoshimine, IBM J. Res. Dev. 12, 206 (1968).
- 30. M. Abramowitz and I. A. Stegun, <u>Handbook of Mathematical Functions</u> (Dover, New York, 1968).
- 31. A. H. Stroud and D. Secrest, Gaussian Quadrature Formulas (Prentice-Hall, Englewood Cliffs, N. J., 1966).
- 32. R. T Pack, J. Chem. Phys. <u>64</u>, 1659 (1976), references therein, and subsequent unpublished work.
- 33. J. Brewer, Tech. Rept. AD 663448 (1967). Available from the Clearinghouse for Federal Scientific and Technical Information.
- 34. J. E. Jordan, S. O. Colgate, I. Amdur, and E. A. Mason, J. Chem. Phys. 52, 1143 (1970).
- J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, <u>Molecular</u> Theory of Gases and Liquids (Wiley, New York, 1967).

- W. N. Sams and D. J. Kouri, J. Chem. Phys. 51, 4809 (1969); W. N. Sams and D. J. Kouri, J. Chem. Phys. 51, 4815 (1969).
- 18. R. G. Gordon, J. Chem. Phys. <u>51</u>, 14 (1969); R. G. Gordon, Methods in Computat. Phys. <u>10</u>, <u>81</u> (1971); Program 187, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, Indiana 47401.
- 19. W. J. Hooker and R. C. Millikan, J. Chem. Phys. 38, 214 (1963).
- 20. K. F. Herzfeld and T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic Press, New York, 1959).
- 21. A. L. Russo, J. Chem. Phys. 47, 5201 (1967).
- 22. T. Just and P. Roth, J. Chem. Phys. 55, 2395 (1971).
- 23. W. H. Green and J. K. Hancock, J. Chem. Phys. 59, 4326 (1973).
- 24. G. A. Parker, R. L. Snow, and R. T Pack, Chem. Phys. Lett. <u>33</u>, 399 (1975).
- 25. G. A. Parker, R. L. Snow, and R. T Pack, J. Chem. Phys. <u>64</u>, 1668 (1975).
- 26. A. I. M. Rae, Chem. Phys. Lett. 18, 574 (1973).
- 27. J. C. Slater and K. H. Johnson, Phys. <u>B</u> 5, 844 (1972); J. C. Slater, Phys. Rev. 81, 385 (1851); 82, 538 (1951).
- 28. E. Clementi, IBM J. Res. Dev. Suppl. 9, 2 (1965).
- 29. A. D. Mclean and M. Yoshimine, IBM J. Res. Dev. 12, 206 (1968).
- 30. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1968).
- 31. A. H. Stroud and D. Secrest, Gaussian Quadrature Formulas (Prentice-Hall, Englewood Cliffs, N. J., 1966).
- 32. R. T Pack, J. Chem. Phys. <u>64</u>, 1659 (1976), references therein, and subsequent unpublished work.
- 33. J. Brewer, Tech. Rept. AD 663448 (1967). Available from the Clearinghouse for Federal Scientific and Technical Information.
- 34. J. E. Jordan, S. O. Colgate, I. Amdur, and E. A. Mason, J. Chem. Phys. 52, 1143 (1970).
- J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, <u>Molecular</u> Theory of Gases and Liquids (Wiley, New York, 1967).

54. R. T Pack (private communication).

55. R. T Pack and J. S. Dahler, J. Chem. Phys. 50, 2397 (1969).

in.

APPENDIX A

ROTATIONALLY INELASTIC MOLECULAR SCATTERING. COMPUTATIONAL TESTS OF SOME SIMPLE SOLUTIONS OF THE STRONG COUPLING PROBLEM.

(A reprint. See Thomas P. Tsien, Gregory A. Parker and Russell T Pack, J. Chem. Phys. 59, 5373 (1973).)

Reprinted from:

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 59. NUMBER 10 15 NOVEMBER 1973

Rotationally inelastic molecular scattering. Computational tests of some simple solutions of the strong coupling problem^{*}

Thomas P. Tsicn[†], Gregory A. Parker, and Russell T Pack[‡] Department of Chemistry, Brigham Young University, Provo, Utah 84602 (Received 13 August 1973)

Partial cross sections (opacity functions) for rotational transitions in atom-diatom collisions are computed in the infinite-order sudden (IOS) approximation and compared with accurate close-coupling (CC) calculations. Agreement is good in the dominant coupling (small total angular momentum J) region. Simple methods for calculating integral inelastic cross sections are discussed, and it is found that accurate cross sections can often be computed very simply, even when large numbers of channels are coupled together, by using IOS or first-order sudden (FOS) approximations for small J and CC or exponential Born (EBDW) methods for large J.

L INTRODUCTION

A major problem in the quantum theory of molecular scattering is that (for small total angular mementum J and any molecules except hydrides) the collision causes large numbers of rotational states to be strongly coupled together. This gives rise to a large set of coupled radial Schrödinger equations which must be solved simultaneously. Although truly significant advances^{1,2} have been made in recent years in the accurate, close-coupled (CC) numerical solution of these equations, the CC computation of the large numbers of cross sections needed in the description of relaxation and reactive processes is still exceedingly expensive. Hence, there remains a real need for approximate methods which give accurate results and yet are computationally simple.

Most simple approximations (such as the ordinary distorted wave approximation) fail miserably in the dominant coupling (small J) region. Besides the sudden approximations used herein, the only other computationally simple method that we know of that may be useful here is the statistical approximation.³ But it cannot be used unless one knows from some other source how many channels are strongly coupled together, ⁴ and it does not give the phase oscillations observed in the figures presented in Sec. III. Hence, it was not used in this work.

In this paper we report calculations comparing some sudden approximations with accurate CC results for several atom-diatom rotationally inelastic collisons using empirical intermolecular potentials. In Sec. II the problem and methods used are outlined; then, in Sec. III, results are presented and comparisons made. We conclude in Sec. IV that simple but adequate approximate solutions of the rotationally inelastic scattering problem are now known.

II. THEORY AND CALCULATIONS

Since the approximations used in this paper have all been discussed elsewhere, only a sketch of their derivations is given.

The objective here is to solve the Schrödinger equation for the collision of an atom A with a diatomic molecule BC. To get at the essential difficulty of treating rotational states, we use the rigid rotor model and formulation of Arthurs and Dalgarno⁵ with empirical intermolecular potentials U of the form

$$U(r',\theta) = V(r') + W(r') P_2(\cos\theta), \qquad (1)$$

where the coordinates are those shown in Fig. 1 and the primes stand for cgs units. In reduced units $(r=r'/\sigma)$, where σ is the point at which V is zero), the coupled equations which must be solved can be written in the form⁵

$$\left[\frac{1d^2}{dr^2} + \mathbf{E} - V(r) - W(r)\mathbf{F}\right]\mathbf{G}(r) = 0, \quad (2)$$

where $G = \{G_n(r)\}$ is a column vector of radial channel wavefunctions, F is a matrix of Percival-Seaton^{3,5,6} coefficients, 1 is the unit matrix, and the elements of E are

$$E_{mn} = \delta_{mn} [k_n^2 - l_n (l_n + 1)/r^2], \qquad (3)$$

where the l_n are relative orbital angular momenta. In these reduced units the channel wavenumbers k_n and energies k_n^2 are given by

$$k_n^2 = 2\mu o^2 E/\hbar^2 - B j_n (j_n + 1), \qquad (4)$$

where μ is the atom-diatom reduced mass, E is the total energy (in cgs units), and the j_n are the rotor angular momentum quantum numbers. The rotational constant B of the diatomic molecule is given in these units by

$$B = \mu \sigma^2 / I_{BC} = \mu_{A-BC} \sigma^2 / \mu_{BC} R'^2$$
 (5)

where R' is the average BC internuclear distance,

FIG. 1. Center of mass coordinates used herein for A + BC collisions.

and μ_{BC} is the reduced mass of BC. The potentials used herein are (in reduced units)

$$V = 4 D(r^{-12} - r^{-6}), \tag{6}$$

and

$$W = 4D(a_{12}r^{-12} - a_6r^{-6}), \tag{7}$$

where $D = 2\mu_{A-BC}\sigma^2 \epsilon/\hbar^2$. Here ϵ is the (cgs) depth of the intermolecular potential and a_{12} and a_6 are asymmetry parameters.

For each value of the total angular momentum J, one must solve the set of coupled equations (2) subject to the boundary conditions

$$G_{n} \sim k_{n}^{1/2} \{ \delta_{ni} \exp[-i(k_{1}r - \frac{1}{2}l_{1}\pi)] \\ -S_{ni}^{I} \exp[i(k_{n}r - \frac{1}{2}l_{n}\pi)] \}$$
(8)

to obtain the elements S_{ni}^{J} of the scattering matrix. Once this is done the degeneracy-averaged integral cross sections needed can be written in the form⁵

$$\sigma (j_m - j_n) = (\pi/k_n^2) \sum_{J=0}^{\infty} (2J+1) \mathcal{O}_J (j_m, j_n), \qquad (9)$$

where the opacity functions (average transition probabilities) $\mathcal{O}_{r}(j_{m}, j_{n})$ are given by⁷

$$\mathcal{P}_{J}(j_{m},j_{n}) = (2j_{n}+1)^{-1} \sum_{\substack{i_{n}=i \ J-j_{n}| \\ j_{n}=i \ J-j_{n}| }}^{J+j_{m}} \sum_{\substack{i_{m}=i \ J-j_{m}| \\ j_{m}=i \ J-j_{m}| }}^{J+j_{m}} |\delta_{mn} - S_{mn}^{J}|^{2}.$$
(10)

To compute "exact" cross sections, one truncates the infinite set of coupled equations by restricting the number of rotational states j_n included, solves the resulting finite set of equations numerically using some CC method and then adds additional rotor states j_n (and their associated l_n) and repeats the CC calculations until the desired opacity functions converge to within some specified accuracy. The CC computations reported here were performed using Gordon's method¹ and program.⁸ The results are accurate but expensive.

Many simple approximate solutions of (2), such as the ordinary distorted-wave (DW) methods, often

give ridiculous results for the systems considered here. For example, the DW $\sigma(2-0)$ for the Ar +TIF example in Sec. III is over ten times too large, and the DW $\sigma(4-0)$ is identically zero. At the very least, one must have a many-state, probability-conserving approximation. One such approximation which we have previously discussed9,10 is the strong coupling or infinite-order sudden (IOS) approximation, appropriate for the small J regions where the elements of WF dominate the differences in the elements of E and strongly couple the equations together. In the IOS approximation one sets $k_n = k$ and $l_n = l$ for all the strongly coupled channels. Then, the resulting equations can be solved exactly: Let G=Ug, where U is the r-independent unitary transformation which makes $U^{\dagger}FU = \Lambda$ diagonal. Then, the elements of g satisfy uncoupled equations and the resulting S matrix is9,10

$$\mathbf{S}^{J} = \mathbf{U}\mathbf{B}\mathbf{U}^{\dagger} = \exp(2i\mathbf{U}\eta\mathbf{U}^{\dagger}), \qquad (11)$$

where

$$B_{mn} = \delta_{mn} \exp\left(2i\eta_n^{sc}\right), \qquad (12)$$

and

$$\eta)_{mn} = \delta_{mn} \eta_n^{sc} \tag{13}$$

The WKB approximation for the phase shifts η_n^{sc} is

$$\eta_n^{sc} = \int_{r_n}^{\infty} \left\{ \left[k^2 - (l + \frac{1}{2})^2 / r^2 - V - W \Lambda_n \right]^{1/c} - k \right\} dr \\ - kr_n + \frac{1}{2} (l + \frac{1}{2}) \pi,$$
(14)

where r_n is the turning point and Λ_n an element of the diagonal matrix Λ . Thus, an N state IOS calculation at a given J simply requires the diagonalization of one $N \times N$ matrix F and evaluation of N WKB phase shifts. In the IOS computations reported here, the Jacobi method was used for the diagonalization and a Simpson's rule numerical integration with increasing step size was used for the phase shifts.

As we have noted previously, ¹⁰ if one expands (14) in powers of Λ_n and keeps only the terms through $\mathcal{O}(\Lambda_n)$, the resulting scattering matrix,

$$\mathbf{S}^{J} = \exp[2i(\eta^{(0)} \mathbf{1} + \eta^{(1)} \mathbf{F})], \qquad (15)$$

is precisely that of the familiar semiclassical first-order sudden (FOS) approximation.¹¹ Here

$$\eta^{(0)} = \int_{r_0}^{r} \left\{ \left[k^2 - (l + \frac{1}{2})^2 / r^2 - V \right]^{1/2} - k \right\} dr$$
$$-kr_0 + \frac{1}{2} (l + \frac{1}{2}) \pi, \qquad (15)$$

and

$$\eta^{(1)} = -\frac{1}{2} \int_{r_0}^{\infty} \frac{W(r)}{\left[k^2 - (l + \frac{1}{2})^2/r^2 - V\right]^{1/2}} dr .$$
(17)

Thus, N state FOS calculations require evaluation of just two phase integrals and expansion of the

TABLE I. Parameters used herein. μ_{A-BC} is the reduced mass of A + BC in atomic mass units; σ is the size parameter of the 12-6 potential in angstroms; a_{12} and a_6 are the repulsive and attractive asymmetry parameters, respectively; ϵ/k_B is the depth of the potential well in °K; B' is the rotational constant of the diatomic molecule in cm⁻¹; E/k_B is the total relative energy available in °K; D is the reduced well depth; B the reduced rotational constant; and $k^2(j=0)$ the reduced total energy.

System	µA-BC (amu)	σ(Å)	a ₁₂	<i>a</i> ₆	€/k _B (°K)	B' (cm ⁻¹)	<i>E/k_B</i> (°K)	D	B	$k^2(j=0)$	Refs.
Ar-TIF	33.89	4.62	0.50	0.30	132.5	0.22246	1344	3947.8	9.541	40,071	13,a
Ar-N,	16.47	3.50	0.50	0.13	119.5	2.010	300	994.2	24.06	2495.9	16
Ar-F,	19.48	3,550	0.200	0.200	115.9	0.862	300	1173.	12.55	3036	18, b
Ar-Cl2	25.55	3.831	0.200	0.200	190.7	0.2438	300	2948.	5.423	4638	18, b
Ar-Br2	31.96	3.837	0.200	0.200	249.8	0.08091	300	4846.	2.258	5820	18, b
Ar-I2	34.52	4.146	0.200	0.200	256.9	0.03736	300	6285.	1.315	7339	18, b

^aR. K. Ritchie and H. Lew, Can. J. Phys. 43, 1701 (1965).

^bG. Herzberg, Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950), 2nd edition.

exponential of a matrix. In this work direct expansion of (15) was found to require as many as 30 terms for convergence. To decrease this number and avoid roundoff error, a Chebyshev polynomial contraction of the expansion was made.

For the moderate- and weak-coupling region (large J) the sudden approximations are not accurate. However, the number of channels (N) required in this region is quite small, so that one can often afford to do the CC calculations. Also, one could use the exponential distorted wave approximations (EDW) discussed by Levine.¹² These start with Eq. (2) and treat WF as the perturbation in an exponential perturbation method to get a unitary S matrix. If one uses the Born approximation as zeroth order, the resulting EBDW calculations¹³ are easily performed. If one uses a distorted-wave approximation as zeroth order, the resulting EDWD approximation gives better results but is *much* more expensive computationally, except in those cases in which one car evaluate the necessary integrals using asymptotic methods.^{10,14}

The calculations reported herein were carried out using the Brigham Young University IBM 360/50 and 7030 STRETCH computers. For typical many-state calculations the relative running times of the FOS:IOS: CC programs were 1:2:90.

III. RESULTS

In this section numerical results for some model problems are presented.

TABLE II. Convergence of partial cross sections as the number of channels (N) is increased. The numbers are the values of $(2J+1) \mathcal{O}_J(2-0)$ for Ar+TlF calculated in the infinite order sudden (IOS) and close-coupling (CC) approximations. J is the total angular momentum and j_{max} the largest rotor j kept.

j _{max}	4.	6	8	10	12	14	16	18	
J	N 9	16	25	36	49	64	81	100	Method
0	0.433	0.209	0.182	0.040	0.085	0.079	0.078	0.078	IOS
20	16.1 16.0	8.78 9.11	0.199 7.18 7.49	1.65 1.81	3.43 3.55	3.11	3.11	0.085	IOS
40	22.5 23.0	17.9 18.4	12.0 13.6	2.88 3.40	5.54 6.10	5.31	5.25		IOS CC
80	0.28 1.13	26.4 26.6	3.37 5.30	0.89 0.91	1.60 1.91	1.42	1.42		IOS CC
120	102.5 99.7	51.8 48.1	26.0 23.0	34.1 31.0	33.5 30.4	33.3			IOS CC
160	33.7 14.2	21.5 1.84	25.6 3.40	25.5 3.17	25.5 3.16	25.5			106 CC
200	2.09 125.5	2.10 123.8	2.10 123.7	2.10					IOS

FIG. 2. Behavior of the dimensionless partial cross sections [(2J+1) times the opacity function \mathcal{O}_J as a function of the total angular momentum J for the j=0 to j=2 transition in an Ar-TIF collision. At the top of the figure is the number of channels N required to obtain convergence. Solid line, IOS results; dashed line, CC results.

A. Ar+TIF

5376

The intermolecular potential used in the calculations on Ar-TIF rotationally inelastic scattering is that of Balint-Kurti and Levine, ¹³ who studied the large J (weak and moderate coupling) opacity functions for this system. This potential (its parameters are listed in Table I) treats TIF as a "homonuclear" diatomic and is thus a crude¹⁵ model for this particular system, but its behavior is typical of an atom-heavy homonuclear diatom collision.

In this work we calculated cross sections for the 0-2 and 0-4 rotationally inelastic collisions using the CC, IOS, and FOS approximations. Particular emphasis was placed on determining the dependence of the opacity functions on the number of channels (N) included and on the total angular momentum J. The rotational states with $j=0, 2, \ldots, j_{max}$ were

FIG. 3. Comparison of the IOS (solid line), FOS (dotted line), CC (dashed line), and EBDW (dot-dash line) dimensionless partial cross sections (2J+1) \mathcal{O}_J (2 - 0) for Ar + TIF.

ROTATIONALLY INELASTIC MOLECULAR SCATTERING

FIG. 4. Dimensionless partial cross sections $(2J + 1) \phi_J (4 \leftarrow 0)$ for Ar + TIF. The notation is the same as in Fig. 3.

included and j_{max} was increased until the desired opacity functions converged to a value stable to within about 5%. For a given j_{max} and $J \ge j_{max}$, the total number of channels (j, l combinations) is

$$N = \sum_{j=0,2,...}^{j_{max}} (j+1) = \frac{1}{4} (j_{max}+2)^2.$$
(18)

For very small J ($J < j_{max}$), N is less than this decreasing to $N = \frac{1}{2}(j_{max} + 2)$ at J = 0.

The convergence of the opacity functions as N is increased was found to be very similar for the FOS, IOS, and CC methods and is illustrated by Table II in which the IOS and CC values for $(2J + 1) \Phi_r (2-0)$ are given for a few J values as a function of N. One sees immediately that in the small $J (J \stackrel{<}{\sim} 180$ in this case) region, convergence is neither rapid nor monotonic, and as many as 64 channels are required to obtain satisfactory convergence.

In Fig. 2 the converged $(2J+1)\sigma_J(2-0)$ obtained from the IOS and CC methods are plotted vs J for all J to allow easy comparison. At the top of the

FIG. 5. Dimensionless partial cross sections $(2J + 1) \mathcal{O}_J (2 - 0)$ for Ar + N₂. The notation is the same as in Fig. 3.

TABLE III. Rotationally inelastic integral cross sections $\sigma(j_f - j_i)$ for Ar + TIF collisions at total energy $E/k_B = 1344$ °K. The units are \dot{A}^2 . Also listed are the percent deviations from the accurate CC value. In the mixed methods the change from small J method to large J method was made at J = 210.

Method	$\sigma(2-0)$	%	$\sigma(4-0)$	%
CC	58.9		16.4	
IOS	69.6	18.4	29.1	77.4
FOS	69.3	17.9	28.3	72.6
IOS + CC	59.0	0.3	16.5	0.6
FOS+CC	59.0	0.3	15.5	-5.5
IOS + EBDW	59.5	1.2	18.6	13.4
FOS + EBDW	59.5	1.2	17.5	6.7

figure is listed the N required for convergence. One sees that the IOS results are a very good approximation to the exact CC results for small J. As J increases the IOS results slowly get out of phase and become, as one might expect, considerably too large in the large J, weak-coupling region. I may be noted that the minimum near J=200 is due to cancellation between the short and long range potentials. Scattering for J > 200is dominated by the long range tail of the potential, and scattering for J < 200 is dominated by the short range repulsive potential. In the small J region competition between many strongly coupled channels markedly damps the probability of a transition to any one channel.

In Fig. 3 the FOS results are compared with the IOS results for this same 0-2 transition; they become identical to the IOS results at larger J. At small J the FOS approximation gets out of phase but has about the right magnitude. Since the inte-

gral inelastic cross section $\sigma(2-0)$ is proportionai to the area under the curve, it is clear that the IOS and FOS cross sections are nearly equal. Also plotted for large J on Fig. 3 are the CC results and the exponential Born (EBDW) results of Balint-Kurti and Levine.¹² The EBDW approximation is better than the sudden approximations for large J but is known to fail completely for small J in this case.¹³

In Fig. 4 the converged FOS, IOS, EBDW, and CC values of $(2J+1)\vartheta_J$ are plotted for the 0-4 transition. The behavior is similar.

The availability of different simple approximations valid in different J regions immediately suggests calculation of integral inelastic cross sections using one approximation for small J and another for large J. Accordingly, in Table III we present the integral inelastic cross sections calculated in the CC, IOS, FOS approximations and several combinations in which one approximation is used for J < 210 and another for $J \ge 210$. Several of the simple methods are seen to give integral cross sections accurate to within a few percent.

It is also worth noting that because of the damping and associated small contribution of the dominant coupling (small J) region, the integral cross sections converge much more rapidly with N than did the small J opacity functions (partial cross sections). This is illustrated by Table IV, which gives the integral cross sections as functions of N.

B. Ar+N2

Calculations of the 0-2 and 0-4 cross sections were also carried out for room temperature Ar-N₂ collisions using the potential parameters of

TABLE IV. Convergence of integral inelastic cross sections $\sigma(j_f - j_i)$ for Ar + TIF as the number of channels (N) is increased. The units are $Å^2$.

				1	N		
Cross section	Method	9	16	25	36	49	64
	CC	65.2	62.8	57.3	58.8	58.9	
$\sigma(2-0)$	IOS	74.7	73.3	69.7	69.4	69.6	69.6
	FOS	76.6	73.7	68.7	69.9	69.3	69.4
	CC	33.7	24.1	20.2	16.3	16.4	
$\sigma(4-0)$	IOS	45.2	38.2	32.2	28.3	29.1	29.0
	FOS	43.0	39.5	29.7	28.6	28.3	28.2

Pattengill, LaBudde, Bernstein, and Curtiss.¹⁶ The resulting IOS, FOS, and CC opacity functions are compared in Figs. 5 and 6. From the number of channels required for convergence [listed at the top of Fig. 5] one sees that this system is not so strongly coupled as the previous one. However, the depression of the partial cross sections for $J \leq 40$ is a strong coupling effect.

Although the sudden approximations are not quite as well justified in this system as in the previous one, they still work quite well in the small J ($J \leq 68$ here) region. It is interesting that for J < 35, the FOS results for the 0-2 transition are better than those of the IOS approximation, which gives too much dominant coupling.

The large J region where the sudden approximations are poor contributes only a very small fraction of the integral cross sections (given in Table V) for this system, and nothing is gained by using one approximation for small J and another for large J. However, the IOS and FOS integral cross sections are still accurate enough to be useful.

The existence and extent of the dominant coupling region in this problem depends very strongly on the repulsive asymmetry parameter a_{12} wnose value is still uncertain. It is interesting to note that if a_{12} were decreased from 0.5 to an earlier estimate¹⁷ of 0.375 with the other parameters fixed, the dominant coupling region disappears, and no more than 16 channels are required for convergence at any J. This is illustrated in Fig. 7, where the FOS values of $(2J+1)\sigma_J(2,0)$ obtained with the two values of a_{12} are compared.

C. Ar+F2, Cl2, Br2, and I2

To check further the observation that in the two previous examples the well-known FOS approximation gives reasonable results for small *J*, even in dominant coupling regions, and to see how the

FIG. 7. Effect of the size of the repulsive asymmetry parameter a_{12} on the FOS dimensionless partial cross sections $(2J+1)\mathcal{P}_J$ (2-0) for Ar+N₂. The solid line is with $a_{12}=0.5$; the dotted line is with $a_{12}=0.375$. TABLE V. Rotationally inelastic integral cross sections $\sigma(j_f - j_i)$ for Ar+N₂ collisions at total energy E/k_B = 300 °K. The units are Å². Also listed are the percent deviations from the accurate CC value.

Method	$\sigma(2-0)$	%	$\sigma(4-0)$	%
CC	22.5		22.4	
IOS	22.3	-0.9	18.8	-16
FOS	21.1	-6.2	16.7	- 25

number N of coupled channels required increases with increasing reduced mass, we calculated the FOS and IOS values of some inelastic cross sections on a series of model problems intended to represent scattering of Ar atoms by F_2 , Cl_2 , Br_2 , and I_2 , respectively. The parameters of the spherical part of each intermolecular potential (see Table I) were obtained using the parameters and combining rules of Hirschfelder, Curtiss, and Bird¹⁸ and should be fairly reasonable estimates; however, the asymmetry parameters were arbitrarily kept fixed at 0.20.

The resulting integral inelastic cross sections (in units of $Å^2$) are presented in Table VI along with the maximum number of channels required to obtain convergence of all partial cross sections to within 5%. Again, the FOS results are good approximations to the IOS results regardless of the number of channels involved.

IV. DISCUSSION AND CONCLUSIONS

From the results of this paper, we conclude that the rotationally inelastic scattering problem is much less difficult than the large number of coupled rotational states would make it appear to be. This is due to the fact that the region where large numbers of states are strongly coupled and competing makes a small contribution to the inelastic cross sections and can hence be safely treated with rather simple approximations. In particular, the IOS and the well-known FOS approximation provide computationally easy ways of obtaining rather good small J partial cross sections for rotationally inelastic collisions of heavy diatomic molecules. For systems in which the large J (weak-coupling long-range) region gives a large contribution to the integral cross section, one can calculate reliable cross sections economically using a sudden approximation at small J and a CC or EBDW method in the large J region where only a few channels are needed.

The major reason for our present interest in the FOS approximation, since the IOS method is already computationally very simple, is that the FOS method is easily applied to potentials more

TABLE	VI. I	ntegral inelas	stic cross	section	ns $\sigma(j_f - j_i)$
(in Å ²) for	room	temperature	collisions	of Ar	with F ₂ .
Cl2, Br2,	and I2.				

System	Approx.	N	$\sigma(2-0)$	$\sigma(4-0)$
Ar+F2	FOS	25	55.72	17.23
Ar+F2	IOS		51.29	17.03
$Ar + Cl_2$	FOS	36	55.15	36.38
$Ar + Cl_2$	IOS		55.72	36.39
Ar + Br ₂	FOS	36	44.38	35.26
Ar+Br2	IOS		46.40	34.15
$Ar + I_2$	FOS	64	51.91	34.14
$Ar + I_2$	IOS		51.44	31.93

general than that used here. For example, the FOS approximation can be applied to potentials of the form

$$U(r',\theta) = \sum_{n=0}^{\infty} U_n(r') P_n(\cos\theta)$$
(19)

by direct generalization of Eqs. (15) and (17). As formulated herein, the IOS approximation cannot be used for such a potential unless $U_n(r') \propto U_m(r')$ for all n, m > 0. However, as this work was being completed, it was discovered¹⁹ that by using hodyfixed coordinate axes a drastic simplification can *always* be achieved via an IOS approximation, regardless of the form of the potential. Furthermore, this approach will also produce a marked increase in the computations speed of both the sudden approximations. Research along this line will be reported in a subsequent paper.¹⁹

ACKNOWLEDGMENT

We thank the Department of Chemistry of Brigham Young University for the generous share of its computing budget which made the CC computations possible.

- *Research supported in part by grants from Brigham Young University.
- [†]Present address: Department of Chemistry, McGill University, Montreal 110, Quebec, Canada.
- ¹Present (temporary) address: *T*-6, University of California-Los Alamos Scientific Laboratory, Los Alamos, NM 87544.
- ¹R. G. Gordon, J. Chem. Phys. 51, 14 (1969).
 ²W. N. Sams and D. J. Koeri, J. Chem. Phys. 51, 4809 (1969); J. Chem. Phys. 51, 4815 (1969); J. Chem. Phys. 52, 4144 (1970);
- and J. Chem. Phys. 53, 4v6 (1970).
- ³R. B. Bernstein, A. Dalgarno, H. S. W. Massey, and I. C. Percival, Proc. Roy. Soc. (London) A 274, 427 (1963).
- ⁴W. A. Lester, Jr. and R. B. Bernstein, J. Chem. Phys. 53, 11 (1970).
- ⁵A. M. Arthurs and A. Dalgarno, Proc. R. Soc. A 256, 540

(1960).

- ⁶I. C. Percival and M. J. Seaton, Proc. Camb. Phil. Soc. 53, 654 (1957).
- ⁷R. D. Levine and R. B. Bernstein, J. Chem. Phys. 53, 686 (1970). ⁸R. G. Gordon, Program 187, Quantum Chemistry Program
- Exchange, Indiana University, 1969. We thank W. A. Lester, Jr. and D. G. Truhlar for a list of the errors in the QCPE version of this program.
- T. P. Tsien and R. T Pack, Chem. Phys. Lett. 6, 54 (1970); J. Chem. Phys. 6, 400 (1970); and J. Chem. Phys. 8, 579 (1971).
- ¹⁰R. T Pack, Chem. Phys. Lett. 14, 393 (1972).
- ¹¹See, for example, R. J. Cross, Jr., J. Chem. Phys. 51, 5163 (1969); R. W. Fenstermaker, C. F. Curtiss, and R. B. Bernstein, J. Chem. Phys. 51, 2439 (1969).
- ¹³R. D. Levine, Mol. Phys. 22, 497 (1971), and references therein.
 ¹³G. G. Balint-Kurti and R. D. Levine, Chem. Phys. Lett. 7, 107 (1970).
- ¹⁴R. T Pack and J. S. Dahler, J. Chem. Phys. 50, 2397 (1969); W. D. Smith and R. T Pack, J. Chem. Phys. 52, 1381 (1970).
- 13 more realistic Ar + TIF potential has been given by J. van de Ree and J. G. R. Okel, J. Chem. Phys. 54, 589 (1974).
- ¹⁶M. D. Pattengill, R. A. LaBudde, R. B. Bernstein, and C. F. Curtiss, J. Chem. Phys. 55, 5517 (1971).
- ¹⁷W. Erlewein, M. von Seggern, and J. P. Toennies, Z. Phys. 211, 35 (1968).
- ¹⁸J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, *Molecular Theory of Gases and Liquids* (Wiley, New York, 1964).
- ¹⁹R. T Pack, J. Chem. Phys. (to be published).

APPENDIX B

CALCULATION OF MOLECULE-MOLECULE INTERMOLECULAR POTENTIALS USING ELECTRON GAS METHODS.

(A.reprint. See Gregory A. Parker, Richard L. Snow and Russell T Pack Chem. Phys. Lett. 33, 399 (1975).)

CHEMICAL PHYSICS LETTERS

15 June 1975

CALCULATION OF MOLECULE-MOLECULE INTERMOLECULAR POTENTIALS USING ELECTRON GAS METHODS*

Gregory A. PARKER, Richard L. SNOW and Russell T PACK** Department of Chemistry, Brigham Young University, Provo, Utah 84602, USA

Received 4 April 1975

A procedure for extending electron gas calculations to *molecule-molecule* interactions is presented which allows rapid determination of the dependence of intermolecular potentials on all vibration and rotation coordinates. Results for HF-HF agree well with accurate SCF calculations.

1. Introduction

There is currently much interest in the calculation of intermolecular potentials between closed shell systems using the electron gas methods developed by Gaydaenko and Nikulin [1], and Gordon and Kim [2], and modified by Rae [3], and Cohen and Pack [4]. These methods have been used successfully to calculate the interaction energies of many pairs [1--5] of closed shell atoms or atomic ions. The method has also been applied to atom-molecule interactions by Kim [6] and by Green and Gordon, whose computer program is available through QCPE [7]. They have used it to determine the angle and distance dependence of the Ar-N2 [6], Ar-HCl [8], He HCN [9], He-CO [10], and He-H2CO [11] interactions. We [12] have also programmed the method and used it to calculate the angle and distance dependence of He H_2 , He-CO₂, Ar-CO2, noble-gas-CO, and noble-gas-HF interactions and the angle, vibrational coordinate, and distance dependence of the Ar-CO and Ar-HF interactions. All results to date are very encouraging, and the agreement with available experimental and ab initio data is very good, considering the simplicity of the

Research supported in part by the U.S. Atomic Energy Commission and the University of California Los Alamos Scientific Laboratory through Subcontract No. XP5-72554.

** Present address: Group T-6, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544, USA. method.

In this letter we show how to extend the calculation of electron gas intermolecular potentials to *molecule-molecule* interactions without loss of speed or accuracy. We apply it to HF · HF interactions as an example and compare results with the accurate SCF calculations of Yarkony et al. [13].

2. Method of calculation

We now sketch the method used to calculate molecule-molecule interactions; details are given elsewhere [12].

In the electron gas model the intermolecular potential energy is the sum of Coulomb, kinetic, exchange and correlation contributions [2,4]. The kinetic, exchange, and correlation terms are expressed as threedimensional integrals over functions of the electron density, and the Coulomb energy is a six-dimensional integral over the electron densities of the two molecules. When one of the species is an atom whose wavefunction is written in terms of a basis set of Slater orbitals, the electrostatic potential due to the atom can be evaluated analytically. This reduces the Coulomb integral to three dimensions, so that in the atom molecule programs [7,12] all the terms are obtained via a three-dimensional numerical integration. However, in the molecule-molecule case, the electrostatic potential due to a molecule cannot be evaluated analytically.

CHEMICAL PHYSICS LETTERS

15 June 1975

and the direct extension of the atom-molecule method leads either to a six-dimensional numerical integration, or, if the charge densities are expanded in orbitals, to all the multicenter Coulomb integrals encountered in the usual ab initio methods. Either of these approaches makes the method so much more expensive computationally as to leave it little advantage over the more accurate rigorous ab initio methods.

Our solution to this problem is to expand the charge density, $\rho_{\rm B}$, of one of the molecules (B), *not* in terms of products of molecular orbitals which are then expanded in basis functions, but directly in a basis of Slater orbitals^{*},

$$\rho_{\rm B} \doteq \widetilde{\rho}_{\rm B} = \sum_{i}^{n_{\rm B}} a_i \chi_i. \tag{1}$$

The a_i are determined by an ordinary linear least squares method except that $(\tilde{\rho}_B - \rho_B)^2 / \rho_B^2 =$ $(\tilde{\rho}_B / \rho_B - 1)^2$ rather than $(\tilde{\rho}_B - \rho_B)^2$ is minimized to provide a good fit to the tail of the charge distribution (important in calculating interactions at large intermolecular distances). The fit is improved by taking Slater orbitals, χ , centered between, as well as on the nuclei of molecule B. If the charge densities of both molecules (A and B) are thus expanded, one can rapidly evaluate the Coulomb energy by doing only $n_A n_B$ two-center type integrals all of which can be done using standard integral programs [14]. However, one can also now evaluate the electrostatic potential (Φ_B) due to B analytically, via

$$\Phi_{\rm B}(r_1) = \int \widetilde{\rho}_{\rm B}(r_2) r_{12}^{-1} \,\mathrm{d}r_2. \tag{2}$$

Then, in atomic units the Coulomb interaction energy takes the form

$$V_{c} = \int dr_{1} \rho_{A}(r_{1}) \bigg[\Phi_{B}(r_{1}) + \sum_{\alpha} \sum_{\beta} \frac{Z_{\beta} f_{\alpha}}{r_{\alpha\beta}} - \sum_{\beta} \frac{Z_{\beta} f_{\alpha}}{r_{\alpha\beta}} - \sum_{\alpha} f_{\alpha} \Phi_{B}(r_{\alpha}) \bigg], \qquad (3)$$

where the sums are over the nuclei α in A and β in B. Here $f_{\alpha} = Z_{\alpha}/N_{A}$, where N_{A} is given by

$$N_{\mathbf{A}} = \int \rho_{\mathbf{A}}(\mathbf{r}_1) \, \mathrm{d}\mathbf{r}_1 \,. \tag{4}$$

The second and fourth terms in the bracket in (3) are constant; they are kept there in that form to achieve maximum cancellation of quadrature errors. Since a three-dimensional quadrature was already required for the exchange, etc., energies, it turned out to be faster in practice to use (2) and (3) and get the Coulomb energy together with the other energies than to evaluate it using a standard two-center integral program [14].

A FORTRAN program to carry out the above calculation has been written [12] and will be submitted to QCPE; some of the procedures in it are as follows: All integration points lying outside a large ellipsoid containing both molecules are bypassed. Integration over the half-ellipsoid closest to A (B) is done using spherical-polar coordinates centered on A (B). Use of two coordinate systems allows the quadrature points to be chosen to handle accurately the peaking of ρ_A and Φ_B near the nuclei of A and B. respectively. Each of the two coordinate systems rotates with its molecule, so that $\Phi_{\rm B}$, $\rho_{\rm B}^{1/3}$ and $\rho_{\rm A}^{1/3}$ can be calculated and tabulated at each of the quadrature points before the integration begins and used to construct the whole potential energy surface, being changed only when vibrational coordinates are changed. The two half-space quadratures are done simultaneously, and at each step of the quadrature on A (B) the functions of ρ_A (ρ_B) needed are obtained directly from the tables while those of $\rho_{\rm R}(\rho_{\rm A})$ are obtained from low order Lagrange interpolation. Although the truncation of each of the two quadratures at the boundary between the half-ellipsoids is not an optimum procedure, the errors in the two halves seem to cancel each other, and the procedure is much faster and more accurate than any of several other approaches that were tried. In practice all the energy terms (Coulomb, exchange, etc.) were obtained accurate to within about 1% at all intermolecular distances using 24 to 40 point Gauss- Legendre quadratures for the ϕ_1 and $x = \cos \theta_1$ integrations and a total of 32 to 40 points for the radial integration which was split up into several small, piecewice Gauss Legendre quadratures with the first few intervals ending at the nuclei of A (B).

⁶ Gaussian basis functions were also tried, but that required a large number of functions with small orbital exponents to fit the tail of distribution. This is also a problem when gaussian basis SCF wavefunctions are used for input.

CHEMICAL PHYSICS LETTERS

3. Results and discussion for HF-HF interactions

As an example, the interaction energy of two hydrogen fluoride (HF) molecules was calculated at a number of intermolecular distances and angles. Although HF is a closed-shell molecule, this system has strong hydrogen bonding interactions and is not an ideal system for use of the election gas model, which allows no adjustment of the charge densities due to the interaction. It was chosen simply because accurate SCF calculations [13] were available for comparison. The calculations were carried out as described above using the SCF wavefunctions for HF of McLean and Yoshimine [15]; each point on the potential energy surface required only 1-2 minutes using an IBM 7030 computer. (This is about 1-2 min/point on an IBM 360/65 or 2-4 s/point on a CDC 7600.) A few representative results are presented in figs. 2-5 using the usual [16] intermolecular coordinates shown in fig. 1 rather than the highly redundant coordinates used by Yarkony et al. [13]. Because true SCF results contain induction but not dispersion effects a rough estimate of the leading terms of the long range induction (IND) energy [17] was added to the "SCF" part (i.e., omitting the correlation terms) of the electron gas results to provide comparable quantities. One sees that for most distances and angles the results are just as good as for atom-atom interactions [2,4] and certainly good enough to encourage use of the method for larger systems where SCF results are expensive and unavailable. Electron gas results both with (GKR) and without (GK) use of the Rae [3] exchange correction are given; for this system results without the correction, i.e., allowing more exchange interaction, are clearly

Fig. 2. Comparison of SCF and electron gas results for the interaction energy (in kcal/mole) of two IIF molecules with $\phi_A = \theta_A = \theta_B = 0$. The solid line gives the SCF results of ref. [13]: the dash-double dot line is the unnodified electron gas (GK) SCF estimate; the dash- dot line is the (GKR) modified SCF estimate; the dotted line is GK plus induction: the dashed line is GKR plus induction; and the circled dots are the long-range electrostatic plus induction energy.

superior and truly remarkably good for most angles. This behavior is opposite that observed in the isoelectronic Ne-Ne interaction [4]. Also plotted in the figures are the estimates of the long range R^{-1} expansion [17] of the electrostatic (ES) plus induction (IND) energies: one sees that the other energies are slowly converging toward the asymptotic results at the largest distances shown on the plots.

The electron gas model does not contain all the in-

401

15 June 1975

CHEMICAL PHYSICS LETTERS

Fig. 3. HF-HF interaction with $\phi_A = \theta_A = 0$, $\theta_B = \pi$. The notation is that of fig. 2.

Fig. 4. HF-HF interaction with $\phi_A = 0$, $\theta_A = \theta_B = \pi/2$. The notation is that of fig. 2.

Fig. 5. HF-HF interaction with $\phi_A = \theta_A = \theta_B = \pi/2$. The notation is that of fig. 2.

duction and charge transfer effects present in the SCF calculation and thus fails to accurately describe the hydrogen bonding region shown in fig. 2. Results in fig. 2 with and without the addition of the leading terms of the long-range induction energy show that it helps considerably; inclusion of more long-range induction terms [18] would make agreement a little better, so that one can thus get most but not all of the attractive well.

Thus, we conclude that the present method, which is directly applicable to polyatomic-polyatomic systems as well, allows rapid construction of a good representation of the repulsive wall of intermolecular potentials. We expect that upon inclusion of van der Waals or correlation contributions [4] one can readily produce whole potential energy surfaces accurate enough to be extremely useful in calculations of V,T,R \leftrightarrow V,T,R energy transfer in molecular collisions. Calculations of potential energy surfaces containing vibrational as well as rotational coordinate dependence are in progress for HF-HF, CO-CO, and other systems [12].

CHEMICAL PHYSICS LETTERS

- References
- V.I. Gaydaenko and V.K. Nikulin, Chem. Phys. Letters 7 (1970) 360;
 V.K. Nikulin, Zh. Tekh. Fiz. 41 (1970) 41 [English
- transl. Soviet Phys. Tech. Phys. 16 (1971) 28]. [2] R.G. Gordon and Y.S. Kim, J. Chem. Phys. 56 (1972)
- 3122; Y.S. Kim and R.G. Gordon, J. Chem. Phys. 60 (1974) 1842, 4323, 4332; 61 (1974) 1.
- [3] A.I.M. Rae, Chem. Phys. Letters 18 (1973) 574.
- [4] J.S. Cohen and R.T Pack, J. Chem. Phys. 61 (1974) 2372.
- [5] B. Schneider, J. Chem. Phys. 58 (1973) 4447.
- [6] Y.S. Kim, Thesis, Harvard University (1973).
- [7] S. Green and R.G. Gordon, Program No. 251 (1974), Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana 47401, USA.

- [8] S. Green, J. Chem. Phys. 60 (1974) 2654.
- [9] S. Green and P. Thaddeus, Astrophys. J. 191 (1974) 653.
- [10] S. Green and P. Thaddeus, Astrophys. J., to be published.
- [11] S. Green, private communication (1974).
- [12] G.A. Parker, R.L. Snow and R. T Pack, to be published.
- [13] D.R. Yarkony, S.V. O'Neil, H.F. Schaefer, C.P. Baskin and C.F. Bender, J. Chem. Phys. 60 (1974) 855.
- [14] S. Hagstrom, Program No. 252, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, Indiana 47401, USA.
- [15] A.D. McLean and M. Yoshimine, IBM J. Res. Develop. Suppl. (1967).
- [16] J.O. Hirschfelder, C.F. Curtiss and R.B. Bird, Molecular theory of gases and liquids (Wiley, New York, 1954) p. 848.
- [17] A.D. Buckingham, Advan. Chem. Phys. 12 (1967) 107.
- [18] A.D. Buckingham, J. Chem. Phys. 48 (1968) 3827.

APPENDIX C

MOLMOL: POTENTIAL ENERGY SURFACES FOR THE INTERACTION OF TWO LINEAR MOLECULES.

(Description of program MOLMOL. See Gregory A. Parker, Richard L. Snow and Russell T Pack, Program No. 305 (1976), Quantum Chemistry Program Exchange, University of Indiana, Bloomington, Indiana 47401.) MOLMOL

Gregory A. Parker Richard L. Snow and

Russell T Pack

Department of Chemistry Brigham Young University Provo, Utah 84602 QCPE - ---

MOLMOL: POTENTIAL ENERGY SURFACES FOR THE INTERACTION OF TWO LINEAR MOLECULES.

Main Entries:

LMOLMO (Calculates the intermolecular potential) SLAFIT (Fits the electron density with a linear combination of Slater basis functions)

Other Entries: None

Abstract:

SLAFIT uses a linear least squares method to fit the electron density of a linear molecule with a linear combination of Slater orbitals. LMOLMO uses the output of SLAFIT and rapidly calculates the interaction energy between two closed shell linear molecules using the electron gas model. The numerical methods and notation used are those of G. A. Parker, R. L. Snow, and R. T Pack, Chem. Phys. Lett. 33, 399 (1975). The electron gas method is that of V. I. Gaydaekno and V. K. Nikulin, Chem. Phys. Lett. 2 360 (1970); R. G. Gordon and Y. S. Kim, J. Chem. Phys. 56, 3122 (1972); A. I. M. Rae, Chem. Phys. Lett. 18, 574 (1973); and J. S. Cohen and R. T Pack, J. Chem. Phys. 61, 2372 (1974). The present program can be extended in a straightforward way to the calculation of polyatomic-polyatomic interactions with little loss of speed. Such an extension is planned and will be sent to QCPE when complete.

Language: FORTRAN IV

Hardware: IBM 7030 STRETCH, CDC 7600, PDP-15

Library Routines: ALOG, ARCOS, COS, DATE, EXP, SECOND, SIN, SQRT, TIME

Common Storage: BASE, BLK1-BLK11

Accuracy:

Single precision floating point operations are used throughout. About 3 significant figures are usually obtained when the number of r, θ , and ϕ integration points used are, respectively, NRA = 32-40, NTA = 24-40, and NPA = 24-40. However, convergence with increasing numbers of integration points should be carefully checked at several distances and angles for each new pair of molecules.

Input Parameters: The input parameters are described in the comment cards in subroutines LMOLMO, ELCPOT, SLATE, RHOMOL.

Example:	Sample test data sets and a sample main program which
	runs LMOLMO and SLAFIT independently are included.
	The results can be compared with the sample output.

Running time: SLAFIT requires about 100 sec of CDC 7600 CP time. LMOLMO requires only about 2.5 sec of CDC 7600 time per point on the potential energy surface.

Subroutines: Subroutines EG, ELCPOT, PFUNC, MOMENT, PN, QUAD3, SELFX, and SLATE are used only by LMOLMO. Subroutines DOT, F, LINEQ, LSTSQ, and VECSUM are used only by SLAFIT. Subroutines GLEGEN, RHOMOL, PLM, and REP are used by both. LMOLMO and SLAFIT and their associated subroutines can be compiled and run as separate programs or overlaid if one wishes to decrease core storage required.

Authors: G. A. Parker*, R. L. Snow and R. T Pack*, Department of Chemistry, Brigham Young University, Provo, Utah, 84602. (*Present address (1975): Group T-6, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545) Additional information, flow charts, etc. can be obtained from G. A. Parker.

Acknowledgment:

Work supported in part by the USERDA.

Subi	routine																													ł	age
	LMOLMO				•	•	•	•		•		•			0	•	٩		•	•	•	•	•	•	•				•	•	97
	EG				•	•		0	•	•		•	•	•			0		•			•	•		•	•			•		104
	ELCPOT				•			•		•	•	•		•		•			•			•	•			•					105
	MOMENT				•		•	•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	108
	PFUNC	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	110
	PN		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•		a	•	•	•	112
	QUAD3	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•		•	•	•	•	113
	SELFX	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	121
	SLATE	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•			•		•	•	•			•		122
	SLAFIT	•	•	•	•	•	•	•	•			•	•	•	•		•		•					•		•	0		•	•	126
	DOT .		•	•	•		•	•	•		•		•		•	•		•			•	0	0	•	•	•		•	•	•	131
	F	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•		0	•	•	•	•	•	•	•	•		132
	LINEQ	•	•	•			•	•	•	•	•		•	•				•	•			•	•		•	0	•	•	•		133
	LSTSQ	•	•		•			•	•		•	•			•	•	•	•		•		•	•	•	•		•	٥		•	136
	VECSUM	•	•	•	•		•	•	•	•	•	•	•	•	•			•	•		•		•	•	•	•	•	•	•	•	138
	GLEGEN	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	140
	PLM .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	168
	REP .	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•		•	•	170
	RHOMOL	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•			•		•		•	•	•	•	171
Test	t calcul	lat	i	on																											
	HF-HF	int	ter	cmo	51	eci	u1;	ar	p	ot	ent	tia	a1		•	•		•	•	•	•	•	•	•	•	•		•	•	•	176

Electorn density fit to the HF molecule

. 186

Listing of LMOLMO and the subroutine that are only used by LMOLMO: EG, ELCPOT, PFUNC, MOMENT, PN, QUAD3, SELFX, and SLATE.

SUBROUTINE LHOLMO C DIMENSION COSPA(96) ,COSTA(96) ,PCTENB(51,40) , 1 COSTH(96) ,COSP1(99) ,COST1(96) , 2 COST2(96) ,DIST(20) ,FLDENA(51,40) , 3 EDENB(96,96) ,NRIJ(20) ,PCTNB(96,96) , 4 RADA(96) ,PADB(96) ,RE(20) , 5 SINPA(36) ,SINTA(96) ,SINTB(96) , 6 WP(96) ,KR(96) ,WT(96) , 7 ZNUCA(5) ,ZNUCB(5) ,ZPDSA(5) , 8 ZPCSB(5) ,CCSTP(5) ,RPOS(5) , 9 ELDENB(51,40) ,EDENA(96,96) C C C PURPOSE C ALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN THO CLOSED- SHELL LINEAR MOLECULES, DATA TO BE READ IN		2345678901112134567890111213456789011121345678901112134567890111213456789011121345678901112134567890111213456789011121345678901111213456789011112134567890111121345678901111213456789011112134567890111121345678901111213456789011112134567890111121345678901111213456789001111213456789001111213456789001111213456789001111213456789001111213456789000000000000000000000000000000000000
C DIMENSION CDSPA(96) ,COSTA(96) ,PCTENB(51,40) , 1 COSTH(96) ,COSTA(96) ,COSTI(96) , 2 COST2(96) ,DIST(20) ,COSTI(96) , 3 EDENB(96,96) ,NRIJ(20) ,PCTNB(96,96) , 4 RADA(96) ,PADB(96) ,RE(20) , 5 SINPA(96) ,PADB(96) ,RE(20) , 6 WP(96) ,FAC(96) ,NT(96) , 7 ZNUCA(5) ,ZNUCB(5) ,ZPDSA(5) , 8 ZPCSB(5) ,CCSTP(5) ,RPOS(5) , 9 ELDENB(51,40) ,EDENA(96,96) C C PURPOSE C CALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN TWO CLOSED- SHELL LINEAR MOLECULES. C DATA TO BE READ IN		34567890112 112134567 1890112 112134567 1890112 189012 180012 180012 180012 180000000000000
C DIMENSION COSPA(96) ,COSTA(96) ,PCTENB(51,40), 1 COSTH(96) ,COSP1(95) ,COST1(96) , 2 COST2(96) ,DIST(27) ,FLDENA(51,40), 3 EDENB(96,96) ,NRIJ(20) ,PCTNB(96,96) , 4 RADA(96) ,PADB(96) ,RE(20) , 5 SINPA(36) ,SINTA(96) ,SINTB(96) , 6 WP(96) ,KR(96) ,WT(96) , 7 ZNUCA(5) ,ZNUCB(5) ,ZPDSA(5) , 8 ZPCSB(5) ,CCSTP(5) ,RPOS(5) , 9 ELDENB(51,40) ,FDENA(96,96) C C PURPOSE C ALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN TWO CLOSED- SHELL LINEAR MOLECULES, DATA TO BE READ IN		4 5 6 7 8 9 0 11 12 13 14 5 16 17 18
DIMENSION CDSPA(96) ,COSTA(96) ,PCTENB(51,40) 1 COSTH(96) ,COSPI(95) ,COSTI(96) 2 COST2(96) ,DIST(20) ,FLDENA(51,40) 3 EDENR(96,96) ,NRIJ(20) ,PCTNB(96,96) 4 RADA(96) ,PAIDB(96) ,RE(20) 5 SINPA(36) ,SINTA(96) ,RIV8(96) 6 WP(96) ,KR(96) ,WT(96) 7 ZNUCA(5) ,ZNUCB(5) ,ZPDSA(5) 8 ZPDSB(5) ,COSTP(5) ,RPOS(5) 9 ELDENB(51,40) ,EDENA(96,96) C PURPOSE CALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN TWO CLOSED- SHELL LINEAR MOLECULES, DATA TO BE READ IN		56789 101123 145167 189
1 COSTR(96) (COSP1(95) (COST1(96) 2 COST2(96) (DIST(27) (FLDEWA(51,40)) 3 EDEWR(96,96) (NRIJ(20) (PCTNB(96,96)) 4 RADA(96) (PADR(96) (RE(20)) 5 SINPA(36) (SINTA(96) (SINTB(96)) 6 WP(96) (NR(96)) (WT(96)) 7 ZNUCA(5) (ZNUCB(5)) (ZDOSA(5)) 8 ZPOSR(5) (COSTP(5)) (RPOS(5)) 9 ELDENB(51,40) (EDEWA(96,96)) C C C PURPOSE C CALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN TWO CLOSED- SHELL LINEAR MOLECULES. C DATA TO BE READ IN		6789 101123 1415 16718 19
2 COST2(96) ,DIST(2P) ,FLDENA(51,40) 3 EDENA(96,96) ,NRIJ(20) ,PCTNB(96,96) 4 RADA(96) ,PADB(96) ,RE(20) 5 SINPA(76) ,SINTA(96) ,SINTB(96) 6 WP(96) ,KR(96) ,WT(96) 7 ZNUCA(5) ,ZNUCB(5) ,ZPDSA(5) 8 ZPOSB(5) ,CCSTP(5) ,RPOS(5) 9 ELDENB(51,40) ,FDENA(96,96) C PURPOSE CALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN TWO CLOSED- C SHELL LINEAR MOLECULES, DATA TO BE READ IN		789 1011 1213 1415 167 18 19
3 EDENR(96,96) ,NRIJ(20) ,POTNB(96,96) , 4 RADA(96) ,PADR(96) ,RE(20) , 5 SINPA(96) ,SINTA(96) ,SINTB(96) , 6 WP(96) ,KR(96) ,WI(96) , 7 ZNUCA(5) ,ZNUCB(5) ,ZPOSA(5) , 8 ZPOSR(5) ,COSTP(5) ,RPOS(5) , 9 ELDENB(51,40) ,FDENA(96,96) , C PURPOSE C CALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN TWO CLOSED= C SHELL LINEAR MOLECULES, DATA TO BE READ IN		8910 111 1213 1415 1617 1819
4 RADA(96) , PADB(96) , RE(20) 5 SINPA(76) , SINTA(96) , SINTB(96) 6 WP(96) , KR(96) , WT(96) 7 ZNUCA(5) , ZNUCB(5) , ZPOSA(5) 8 ZPOSB(5) , COSTP(5) , RPOS(5) 9 ELDENB(51, 40) , EDENA(96, 96) C C C C PURPOSE C C SHELL LINEAR MOLECULER POTENTIAL BETWEEN TWO CLOSED- SHELL LINEAR MOLECULES, C DATA TO BE READ IN DATA TO BE READ IN	L L M O L M O D D O L M O L M O D D O D O D D O D O D O D O D O D O D	9 18 11 12 13 14 15 16 17 18
5 SINPA(?6) ,SINTA(?6) ,SINTB(?6) 6 WP(?6) ,WR(?6) ,WT(?6) 7 ZNUCA(5) ,ZNUCB(5) ,ZPDSA(5) 8 ZPOSB(5) ,CCSTP(5) ,PPOS(5) 9 ELDENB(51,40) ,EDENA(?6,?6) C C C C CALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN TWO CLOSED- SHELL LINEAR MOLECULES. C DATA TO BE READ IN D		10 11 12 13 14 15 16 17 18
6 WP(96) , WR(96) , WT(96) , 7 ZNUCA(5) , ZNUCB(5) , ZPOSA(5) , 8 ZPOSB(5) , COSTP(5) , RPOS(5) , 9 ELDENB(51,40) , EDENA(96,96) C C C C PURPOSE C CALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN TWO CLOSED- C SHELL LINEAR MOLECULES. C DATA TO BE READ IN	LH0 LH0 LH0 LH0 LH0 LH0 LH0 LH0 LH0	11 12 13 14 15 16 17 18
7 ZNUCA(5) ,ZNUCB(5) ,ZPDSA(5) , 8 ZPDSB(5) ,CDSTP(5) ,RPDS(5) , 9 ELDENB(51,40) ,EDENA(96,96) C C C PURPOSE C CALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN TWO CLOSED= C SHELL LINEAR MOLECULES, C DATA TO BE READ IN	L MO L MO L MO L MO L MO L MO L MO L MO	12 13 14 15 16 17 18
8 ZPOSB(5) ,COSTP(5) ,RPOS(5) , 9 ELDENB(51,40) ,EDENA(96,96) C C C PURPOSE C CALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN TWO CLOSED- C SHELL LINEAR MOLECULES, C DATA TO BE READ IN	L MO L MO L MO L MO L MO L MO L MO	13 14 15 16 17 18
9 ELDENB(51,40) ,EDENA(96,96) C C C C C PURPOSE C CALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN TWO CLOSED= C SHELL LINEAR MOLECULES, C DATA TO BE READ IN	LMO LMO LMO LMO LMO LMO	14 15 16 17 18
C C C C C C C C C C C C C C C C C C C	LH0 LH0 LH0	15 16 17 18
C PURPOSE C PURPOSE C CALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN TWO CLOSED= C SHELL LINEAR MOLECULES, C DATA TO BE READ IN	LM0 LM0 LM0 LM0	16 17 18
C PURPOSE C CALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN TWO CLOSED= C SHELL LINEAR MOLECULES, C DATA TO BE READ IN	LM0 LM0 LM0	17 18 19
C CALCULATE THE INTERMOLECULAR POTENTIAL BETWEEN TWO CLOSED- C SHELL LINEAR MOLECULES, C DATA TO BE READ IN	LM0 LM0	18
C SHELL LINEAR MOLECULES, C DATA TO BE READ IN	LMO	19
C DATA TO BE READ IN	LHO	
		20
C TITLE (A 1 IN COLUMN 1 FOLLOWED BY THE TITLE)	LMO	21
C CARD 2	LHD	22
C NOIST-NUMBER OF DISTANCES	LHO	23
C NPHI1-NUMBER OF PHI1 ANGLES	LMO	24
C NTHETI-NUMBER OF THETI ANGLES	LHD	25
C NTHET2-NUMBER OF THET2 ANGLES	LHO	26
C IDENT=1 IF THE MOLECULES ARE IDENTICAL	LMO	27
C ***NOTE- IF THE MOLECULES ARE IDENTICAL REMOVE THE	LHO	85
C COMMENT ON LHOLBRES AND LHOLBRES IF	LMO	29
C SAVINGS IN COPE STORAGE IS DESIRED***	LMD	32
C KASE=1 IF THE COSINE OF THE ANGLES PHIL, THET1, THET2 ARE TO	LMC	31
C KASE=1 BE READ IN.	LHD	32
C NCASE=1 IF THE WAVE FUNCTION BASIS SET IS TO BE USED FOR	LHO	33
MOLECULE A.	LMO	34
C CARD 3	LMO	35
C DIST-DISTANCES AT WHICH THE POTENTIAL IS TO BE CALCULATED AT	LHO	36
C CARD 4	LHD	37
C NRB-NUMBER OF RADIAL INTERPOLATION POINTS.	LHO	38
C NTB-NUMBER OF ANGULAR INTERPOLATION POINTS	LHD	39
C RMAX-MAXIMUM DISTANCE FOR INTERPOLATION	LHO	48
C BASEMI MAJOR AXIS OF THE ELLIPSE	LMO	41
C REEGN-FIRST RADIAL POINT FOR EQUIDISTANT INTERPOLATION	LMO	42
C CARD 5	LMO	43
C NTA-NUMBER OF THETA INTEGRATION POINTS	LMD	34
C NPA-NUMBER OF PHI INTEGRATION POINTS	LHO	45
C NRIS-NUMBER OF SECTIONS FOR THE RADIAL INTEGRATIONS	LMD	46
C CARD 6	LMO	47
C NELI-NUMBER OF RADIAL INTEGRATION POINTS IN EACH SECTION	LMD	48
C CARD 7	LHO	49
C RE-ENDING POINTS FOR THE RADIAL INTEGRATION	LMD	58
C CARD A	LMD	51
C ISTD-STARTING PARAMETER FOR THE DISTANCES	LHO	52
C ISPI-STARTING PARAMETER FOP THE PHTI ANGLES	LMD	53
C ISTI-STAFTING PARAMETER FOR THE THETI ANGLES	LMD	54
C IST2-STARTING PARAMETER FOR THE THET2 ANGLES	LMD	55
C CARD 9	LND	56

	RUN-18	7	0	L	OMJO		76/04/	89	20,1	3,03	PARKE	RIZUR	PAGE	NO.	S	
	с	N	FLEC	A-NUMBER	OFE	LECTRONS	IN MO	LECUL	E=A				LHO			57
	С	84	FLEC	B-NUMBER	OFE	LECTRONS	IN MO	LECUL	.E=8				LHO			58
	C	CARD	10	(NPTION	1)								LHO			59
	С	c	OSP1	-COSINE	OF TH	E PHIL A	NGLES						LHO			68
	C	CARD	11	COPTION	11)								LHO			61
	c	C	OSTI	-COSINF	OF TH	E THETS	ANGLES						LMD			65
	C	CARD	12	COPTION	11)	-							LHO			63
	C	c	STSC	-COSINE	OF TH	E THETS	ANGLES						LHO			64
	C												LHO			65
1		COMM	ION /	HASE/CA	5,35)	.LA(5,35), NA(5	, 357,	NUPAL	5), NCE	NB, ZETA	(5,35)	LMO			65
	2												LHO			67
	L	FOUT											LHO			68
-		EGUI	VALE	NEE LELI	NATE	IL FDENR	ND(1/1	,,					LHO			24
*		EGUI	VALC	NEE LEDE	MALLE	IJACUEND	(1,1))						1 40			10
	2												LHO			11
	c	DATA	TWO	21/6 28	18530	71866/							LHO			72
		DATA	DT/	1 14150	4515R	QR/							I MO			78
		DATA	PIZ	11.57079	63267	949/							I MO			75
	c	DATA											LHO			76
	č												LMD			77
	C	A SY	STEM	CLOCK S	UJROU	TINE							LHO			78
	C		-										LHO			79
1		STOT	=2.8										LMO			88
2		CALL	SEC	ONDISEC	1)								LMD			81
	C												LMO			82
	c												LMO			83
4		READ	(5,2	40)									LMO			84
10		READ	15,3	701NDIS	, NPHI	1. NTHETS	, NTHET	Z, IDE	NT, KAS	SE, NCA	SE		LMO			85
32		READ	(5,1	98)(015	(NR),	NR=1,NDI	ST)						LMO			86
41		READ	15,4	30) NR8, 1	NTB, RM	AX, B, RBE	GN						LMD			87
57		PEAD	(5,3	70) NTA, 1	NPA, NR	IS							LMO			88
71		READ	(5.3	72) (NRI.](]),]	=1, NRIS)							LMO			89
169		READ	(5,1	99) (RE (.	J), J=1	,NRIS)							LHO			98
107		READ	(5,3	70) ISTO	ISP1.	ISTI, IST	5						LMC			91
153		READ	(5,3	70) NELEO	A, NEL	EÇB							LHO			92
	C												LMD			93
	C					BETER							LMU			94
	C					DETERM	INE IN	E ANU	LES A	I WHIL	n Inc		LMU			42
	2					INIERM CALCU	ATED	AR PL	TENIT	WE WIE	L DE		1.00			40
						LALLUL	AILU A	•					LHO			91
	-												LHO			95
177	L.	TALL	CI E	CENENTH		ST2. WT		20					LHO		2	100
137		EALL	GLE	GENINEH		SPI.WT.	1 0.1	21					I MO			100
143		CALL	GIF	GENENTHE	11.00	ST1.WT.	1.0.1.1	8)					I MD		3	102
147		IFIK	ASE.	NF . 1160	TO 10			.,					LHO			103
151		READ	(5.1	90)(005	1(J).	J=1,NPHI	1)						LHO			124
160		READ	(5,1	98) (CCS	1 (K) .	K=1,NTHE	T13						LHO		1	185
167		READ	(5,1	98) (COST	2(1).	L=1,NTHE	12)						LHO			186
	C												LNO			187
	С												LMO			108
	C					CALCUL	ATE TH	E AND	LES AN	ND THE	RADIAL		LMO			129
	C					DISTAN	CES FOI	R THE	EQUI	DISTAN	T		LHO			118
	C					TABULA	TION O	THE	ELECT	TRON			LMO		1	111

	RL	JN-18	87 0	LMOU	MC	76/	94/89	20.13.	83 P	ARKERZZUR	PAGE	ND.	3
	c				DE	NSTILES	AND THE	ELECTR	DSTATIC	POTENTIAL	LHD		112
	С										LHO		113
	C										LMO		114
176		10	DELTATE2.	Ø/FLOAT(11-81						LMO		115
505			DO 20 NT=	1,NTB							LMD		116
203			COSTR(NT)	=FLOAT(N'	(=1) +DEL	TAT-1.0)				LHO		117
201		20	SINTB(NT)	=SQFT(1.	COSTBC	NT) + CO3	TB(NT))				LHD		118
\$50			RLASTESOR	TIRMAXER	44X/4.0+	B*B)					LMO		119
559			RE(NRIS)=	RLAST							LMD		120
550			RENDERMAX	+8							LMD		121
220			DELIAREIN	NOTREEG	A) / FLUAT	(NKB=3)					LHU		122
230			DO SH NHE	I NRB							LHU		123
244		30	RAUD(NR)=	DELIAMEN	UATINKE	C] + KBEG	190				LHU		124
	L.										LHO		123
	5				FO		TNTECOAT		TR		LHO		120
	2				10	AH INC	THILDRAI	TON FOI	1198		LMD		138
	-										I MO		120
247			NRAZA								LMO		130
247			RIFERO								LMO		131
250			DD 48 Jas	.NRIS							LMD		132
253			NRIPIENRA	+1							LMO		133
253			NRAENRA+N	RIJ(J)							LMO		134
256			CALL GLES	ENENRIJE	J), RADAC	NRIPI1.	WRINRIPI	J.RIE.R	ECJI		LMO		135
262		42	RIETRE(J)								LMD		136
266			DO 50 NR=	1.NRA							LMO		137
274		50	WR (NR) = WR	(NR) +RAD	(NR) +RA	DA (NR)					LHO		138
276			CALL GLEG	EN(NTA,C	DSTA, WT,	-1.0.1.	0)				LMO		139
302			00 60 NT=	1.NTA							LMO		140
304		68	SINTA(NT)	=SORT(1.	B-COSTA(NT) + COS	TA(NT))				LMO		141
316			CALL GLEG	FNINPA,C	DSPA, WP,	B. P. TNO	PI				LMO		142
351			00 70 NP=	1, NPA							LMO		143
353			SINPA(NP)	=SIN(COSE	PA(NP))						LHO		144
327		70	COSPA(NP)	=COS(COS	PA(NP))						LMD		145
	C										LHO		146
	C										LHO		147
	c				ST	ORE THE	ELECTRO	N DENSI	TIES OF		LHO		148
	C				TH	E MOLEC	ULES AND	THE EL	ECTROST	ATIC	LMO		149
	C				PU	IENITAL	OF MULE	CULE=8.			LHU		150
***	C										LHU		151
330	•		IF (JUENI,	EQ.1160	10 100						1.00		152
340			PALL CLASE	ELCOSTA I	DENA N				-	70004 43	LHO		100
161			CALL SLAT	EICOSTA.	DENA A	NUCA NO	D LTD DA	DR STAT	R THUCK	TROSA IS	LND		104
373			CALL SLAI	210031011	LULINA IN	NUC AY INA	OF ALL AND	D313141	De LINULA	12000011	LHD		155
300		8.0	CALL PHON	AT2031 10	FI DENA	NUCL.N	DA NTA D	ADA STN		A. 70054.11	LHO		150
401		00	CALL PHON	OL COSTR	EDENA.	NULLA . N	PR.NTR.R	ADE.STN	TR. ZNUC	A. 7PCSA. 01	INC		158
413		90	CALL MOME	NTECOSTA	FIDENA	NELFCA	NNUTA .	NRA	NTA .	RADA .	I MO		150
			1	SINTA	. WE	. KT	TPOSA .	ZNUCA 1			LND		168
433		100	CALL FLCP	OTICOSTA	COSTP	ELDENB	ELDENA.	NNUC3 .	NRA .	NTA .	LMO		161
		1	1	POTEN	ACANA	RPCS	SINTA .	ZNUCE .	POSB .	1	LMD		162
		2	2	IDENT	>						LMD		163
450			CALL ELCP	OTICOSTR	.COSTP	EDENB	, EDENA .	NNUCE .	NRB .	NTB .	LHO		164
		- 1	1	FOINB	,RADB	, RPCS	,SINTH ,	ZNUCS .	ZPCS8 ,	8 ,	LHO		165
		2	2	IDENT)						LHD		166
	RUN-107	0	LMOLHO	76/04/09	20.13.03	PARKERZZUR	PAGE	NO, 4					
------	---------	-------------	------------------	----------------	-------------	------------	------	-------					
467	IFC	IDENT. NE	.1)GO TO 120				LMD	147					
471	NNU	CAENNUCE					I MO	168					
473	DO	110 TA=	NCENB				I MO	160					
501	7 NU	CALTAIR	NUCRITAN				LMO	170					
501	110 700	SACTATA	POSB(TA)				LMD	171					
584	120 CAL	L MOMENT	COSTA .ELDENP	NELECH NUCH	NRA NTA	RADA .	LMO	172					
	1		SINTA .WP	.WT ,ZPOSB	ZNUCH)		LMO	173					
	C						LMO	174					
	C		542				LMO	175					
	C		CA	LCULATE THE SE	LF EXCHANGE		LHO	176					
	C		EN	ERGY CORRECTIC	IN		LMO	177					
	C						LMO	178					
	C						LMO	179					
521	NEL	ECT=NELE	CA+NELECB				LMO	188					
523	CAL	L SELFXI	NELECT, SELF)				LHO	181					
	C						LMD	182					
	C A S	YSTEM CI	OCK SUBROUTINE				LHO	183					
	C						LHD	184					
525	CAL	L SECOND	(SEC)				LMD	185					
530	SEC	=SEC=SEC	1				LHO	186					
536	STU	ISSTUT#:	EC				LMU	187					
	C .						LMD	168					
	C						LMU	189					
233	CAL	L DAIEL	UUAYJ				LHU	145					
534	LAL	TELL DAL	1112)				LHO	191					
5/12	HAI LOT	10101241	TODAY				LHO	190					
550	w D T	TE(6. 36	TYME				LHO	173					
556	140	TOFNT L	LINRTYFIA. TRO	1			I MO	105					
564	WRT	TE (INDIST	.,			I MO	194					
572	WRT	TE (5. 290	DISTINEL.NR.	1.NDTST			I HO	107					
631	WHT	TF (6. 526	NPHI1				LMD	198					
687	WRI	TE (6. 290	COSPICAT).NT	=1.NPHI1)			LHO	199					
616	WRI	TE 16, 530	INTHET1				LHO	208					
624	WRI	TE (6, 296	COSTI(NT), NT	=1.NTHETZ)			LHD	201					
633	WRI	TE(6.546	INTHET2				LMO	282					
641	WRT	TE(6,290)(COST2(NT),NT	=1, NTHET2)			LHO	203					
658	WRI	TE(6,240))				LHO	204					
654	WRI	TE(6,250	TODAY				LHO	205					
662	WRI	TE(6.268	I) TYME				LMO	269					
670	WRI	TE(6.560)NRB				LMO	207					
676	#RI	TE(6,298) (RADB(NR), NRS	1, NRB)			LHO	208					
785	WRI	TF(6,550	UNTB				LMO	588					
713	WRI	TE (6.200	COSTB(NT), NT	=1,NTB)			LHO	218					
722	WRI	TE(6,576)NRIS				LMO	211					
730	ZEP	0=3.0					LWD	212					
731	WRI	IE(6,196	JZERU				LMU	213					
751	WRI	TELDICAL	JINGIJIJJ MELJ	1) 0=1 (NK12)			LHO	214					
747	WH I	1010100	TOTA	A NOAS			LMO	215					
703	WR1	TELL EN	INTA AVALNEJINE	11-1441			LHO	210					
1000	WK I	16(6.200	ALCOSTAINTS	PL.NTAT			LHO	217					
1097	LPT	TE14.400	INPA	7397183			LNO	210					
1615	WPT	TF (6. 200	COSPACNEL-NE	E1.NPAT			IND	228					
1024	WRI	TE (6.616	NELECA				LMO	221					

	RUN-	107	0	LMC	LHO		761	84/8	9	20.1	3.03	PARKERZZUR	PAGE	NC.	5
1032		WRT	1516.6	20) NELEC	8								1 40		223
1840		WRI	TE (6. 2	101356									LHO		223
1046		ARI	TF16.1	80)									LMO		224
	C												LMO		225
	č												LHO		226
	č					DO	LCOP	FOR	THE	RADI	AL DIS	TANCES	LMO		227
	C												LHO		855
1052		DO	170 I=	ISTD, ND1	ST								LMO		229
1254		RED	IST(I)										LMO		230
	C												LHO		231
	C					DO	LOOP	FOR	THE	PHIS	ANGLE	S	LMO		232
	C												LMO		233
1056		DO	150 JE	ISP1, NPH	111								LMO		234
1060		CPH	11=005	PI(J)									LMO		235
1061		PHI	SARCO	S(CPHI1)									LMO		236
1063		SPH	11=SOR	T(1.0-CF	HI1+CPH	11)							LMO		237
	C												LMD		238
	C				A	DO	LOOP	FOR	THE	THET	1 ANGL	ES	LMO		239
	C												LMO		242
1071		00	150 K=	IST1, NTH	ET1								LHO		241
1273		CTH	ETI=CO	STICKI									LHO		242
1074		THE	TISARC	OSICTHET	1)								LHO		243
1076		STH	ET1=SQ	RT(1.P=C	THET1+C	THET	1)						LMD		244
	C												LHO		245
	С				A	DD	LOOP	FOR	THE	THET	2 ANGL	ES	LHO		246
	С												LHO		247
1104		DO	140 L=	IST2, NTH	ETZ								LMO		248
1106		CTH	ET2=CO	ST2(L)									LHO		249
1107		THE	12=ARC	OSICTHET	23								LMO		258
1111		STH	ETZESA	RT(1.0-0	THET2+C	THET	(5)						LHO		251
	C	AS	YSTEM	CLOCK SL	BROUTIN	E							LMO		252
	С												LHO		253
1117	-	CAL	L SECD	ND(SEC1)									LHO		254
	C												LMO		255
	C												LHO		256
	C				D	0 4	THRE	E DI	MENS	IONAL	NUMER	ICAL	LHO		257
	С				G	UADR	ATUR	E TO	CAL	CULAT	TE THE		LMO		258
	С				I	NTER	ACTI	ON PI	DTEN	TIAL	BETWEE	N	LMD		259
	C				T	HE M	OLEC	ULES,					LHO		200
	C												LHD		261
	. C												LHG		262
1120		CAL	L QUAD	31 POTNE	, COSPA	. COS	TA .	COSTI	8,00	OSTP	,CPHI1	,CTHET1	LHD		263
		1		, CTHETE	DELTAR	, DEL	TAT,	EDEN	A ,EI	DENB	. F.CORR	, ECOUL	LHO		264
		2		FEKIN	ELDENA	. ELC	ENB,	EXCH	, NI	ELECA	, NELEC	B, NNUÇA	LHO		265
		3		, NNUCB	, NPA	, NRA		NRE	, N	TA	, NTB	POTENB	LNO		266
		4		, R	, RPDS	, RAD		RADE	, 51	ELF	, SINPA	, SINTA	LHO		267
		5		,SPHI1	STHET1	,STH	ET2.	WP	p W1	R	# WT	, ZPOSA	LMD		598
		6		, ZPOSB	, ZNUCA	, ZNL	. 831	RBEGI	N , II	DENT	, B)	LMO		269
	C												LHO		278
	C												LMO		271
1200		CAL	L SECO	NC(SEC)									LHO		272
1205		SEC	SEC-S	EC1									LNO		273
1205		STC	TESTOT	+SEC									LHO		274
1285		GKS	CFEEXC	H/SELF+E	KIN+ECO	UL.							LHO		275
1205		GKR	SCFREX	CH+EKIN4	FCOOL								LHO	× •	276

	RL	JN=187	0	LMO	LMO	76/84/89	20,13,03	PARKERZZUR	PAGE	ND.	6
1205		G	KEGKSCH	+ECORR					LHO		277
1205		G	KRIGKR	CF+ECORR					LHO		278
	С								LMO		279
	С								LHO		288
1217		1	FLICOU	IT. NE. 0) GC	TO 130				LMD		281
1220		C	ALL DAT	E(TODAY)					LHO		282
1555		c	ALL TIM	E(TYME)					LHO		283
1554			RITE (SI	246)					LMO		284
1530		-	RITE(6	250) TODAY					LHO		285
1236			RITE(6	263) TYME					LHO		286
1244		130 1	COUNTE	COUNT+1					LMO		287
1246		I	FLICOU	T.EQ.8)IC	DUNTEO				LHO		288
1250			RITE(6)	49FJSELF.	SFC, R, PHII	INTHETINTHETZ	. ECORR, ECOUL,	EXCHIERIN	LHO		284
		1		- GRSLF	GRRSLF, GR	L EKTH ECOLL			LHO		290
1310			RITEL /	500110616	ELURRIEAL	HICKIN, ECUUL	, UNSLE , UNROLF	JUNJUNK	LHO		203
1220	~	149 0	UNITAU	-					LHO		292
	5								LHO		293
	5				DECO		NE DADAMETERS		LHO		294
	ř				10 0	NF	NO FRANCICAS		IND		296
	č								I MD		207
	č								LMD		298
1341	•	150 1	1=518				-		LHO		299
1344		168 1	511=1						LND		380
1350		170 1	SPIEI						LMO		301
1353		1	STDE1						LHO		302
	С								LMD		303
	C								L.MO		384
1354			RITE(6.	278) 5101					LMO		305
1362			ETURN						LMD		326
	C								LHO		387
	C								LHO		368
		189 F	ORMATC	LH1)					LMO		309
		190 F	ORMAT (3F18.7)					LMO		310
		266 b	ORMAT (15X, 15/F1P	.5)				LHO		311
		210 F	OPMAT(HO, JEHTIM	E REQUIRE	MENT FOR THIS	CALCULATION	WAS .F10.5	LHO		312
		1		H SECONDS	•/)				LHU		213
		220 1	ORMAT (H ,1018)					LHO		314
		230 1	ORMAIL	Heren N	0131,04	Incicion NP	att ten wind	11,00 0430	LHO		313
		240 1	URMAIL	101				(LNO		310
		254 5	COMATO	10 . 60Y . 5H	DATE .ART			,	INO		317
		260 6	OPHATC	H . 627.54	TTHE . ARY				IMO		310
		270 1	OPHLTC	HA. ZEHTOT	AL TIME RE	QUITRED= . F14.	7. AHSECONDS /	1 11 1 1	I MO	-	120
		280 6	ORMATC	HA. IPARI					I MO		321
		290 6	ORMATC	Y. 5F12.51					LMD		322
		300 6	ORMATC	HO. 17HTHE	THETAR AN	GLEST			LMO		323
		318 5	ORMATC	HØ. 17HTHE	PHI1 AP	GLES)			LMO		324
		328 F	ORMATC	HA. LAHTHE	THET: AND	SLES)			LMO		325
		330 F	ORMATC	HR, ZONTHE	RADIAL DI	STANCES)			LHO		326
		340 F	ORMATC	HR, 29HTHE	RADIAL IM	TEGPATION PO	INTS)		LHD		327
		350 P	ORMAT	HR, 28HTHE	THETA INT	EGRATION POI	NTS)		LHO		328
		368 F	OPMATC	He, 26HTHE	PHI INTER	RATION POINT	8)		LMO		329
		378 F	ORMATC	615)					LMO		338
		388 F	ORMAT (H0,42HTHI	S POTENTI	L SURFACE CA	LCULATION IS	FOR .	LMO		331

RUN-107	o	LMOLMO	76/04/89	20,13,03	PARKERZZUR	PAGE N	0. 7
1	19HI	DENTICAL MOLECU	LEST			LMO	332
392 FOF	MATCING.	15H R1F	+15H	R2E)		LMD	333
400 FOF	MATCHR.	SH NTT . SH NPT	SH NRIST			LMD	334
41P FOR	MATCING	10H NELECA.1	AM NELECH)		LMD	335
420 F 0F	MATCIN .	2112)				LHO	336
432 FOF	MAT (215.	5F10.5.F14.7)				LHO	337
44P FCF	MAT (1HO.	215, 5X, F18, 5, E1	4.7)			LMO	338
458 FOF	MATCINO,	3HXT2)				LMO	339
468 FOR	MATCINO.	3HXR2)				LMO	348
478 F	MATCING,	4HZETA)				LHO	341
480 FOF	MATCINO.	2HAN)				LMO	342
498 FOF	MATCINO,	7X, 5HSELF=, E14.	7. 3X. BHSECON	DS=, E14.7/1H	12x, 2HR=, E14.7	LHO	343
1	. 6X. 5	HPH11=,E14,7,3X	, THTHETA1=, E	14.7,2X, 7HTHE	A2=, E14.7/1H	LHO	344
2	.12HC	ORRELATION=, E14	7,11H COULD	MBIC=, E14.7,18	H EXCHANGE	LHO	345
3	.E14.	7,9H KINETIC=,E	14.7/1H , 6X,	6HGKSCF=,E14,1	,4X, THGKRSCF=	LMO	346
4	.E14.	7,7X, 3HGK=, E14,	7.5%, 4HGKR=,	E14.7)		LMO	347
500 FCF	MATCFID.	5,4114.7/4114.7)			LHO	348
51C FOF	MATCINO,	43HTHE POTENTIA	L SURFACE WI	LL BE CALCULAT	ED AT, IS.	LHD	349
1	17H	RADIAL DISTANCE	5/)			LHO	350
520 FOF	MATCINO.	43HTHE POTENTIA	L SUPFACE WI	LL BE CALCULAT	ED AT, 13,	LMD	351
1	134	PHIL ANGLES. 135	H THE COSINE	S OF THE PHIL	ANGLES ARE/)	MOL1	1
530 FOF	MATCING,	43HTHE POTENTIA	L SURFACE WI	LL BE CALCULAT	TED AT, IS.	LMO	353
1	154	THETAL ANGLES ./	37H THE COSI	NES OF THE THE	TAL ANGLES ARE	MOL1	1
5	1)					LHO	355
548 FOR	MATCINO,	43HTHE POTENTIA	L SURFACE WI	LL BE CALCULAT	TED AT, 13,	LMO	356
1	154	THETA? ANGLES ./	37H THE COSI	NES OF THE THE	TA2 ANGLES ARE	MOL1	3
5	13					LHO	358
55P FOR	MATCING.	18HTHE COSINES	OF THE, 13,20	H THETA INTERP	POLATION,	MOL1	4
1	11H	POINTS ARE/)				LMO	368
56F FOF	MAT (1H0,	3HTHE, 13, 32H RA	DIAL INTERPO	LATION POINTS	ARE/)	LHO	361
570 FOF	MAT(1H1.	41HTHE RADIAL I	NTEGRATION W	ILL BE SPLIT 1	INTC, I3.	LHO	362
1	104	SECTIONS./32H T	HE SECTIONS	AND THE NUMBER	R OF	MOL1	5
5	SOHD	CINTS IN EACH S	ECTION ARE/)			MOL1	6
580 F09	MATCINO,	3HTHE, 13, 26H RA	DIAL INTEGRA	TION POINTS/)		LMO	365
596 FOR	MATCINO,	3HTHE, 13, 25H TH	ETA INTEGRAT	ION POINTS/)		LHO	366
600 FOF	MAT (1HP.	3HTHE, 13, 23H PH	I INTEGRATIO	N POINTS/)		LHD	367
610 FOF	MATCINO,	14HHOLECULE A H	AS, 13, 10H EL	ECTRONS)		LMD	368
620 FCF	MATCIHO,	14HMOLECULE B H	AS, IS, INH EL	ECTRONS)		LHO	369
C						LHO	378
C						LHO	371
END)					LMO	372

1363 C

	RUN=1	07 0		76/84/89	20.13.03	PARKER7.2UR	PAGE	NÇ.	1
		FUNCTION E	G(CUBRDN)				LHO		375
	С						LHO		374
	c						LHO		375
	C	PURPOSE					LHO		376
	C	CORRELA	TION ENERGY DENSITY	۲.			LHO		377
	C						LHO		376
	C	DESCRIPTIO	IN OF PARAMETERS				LHD		379
	C	CUBRDN	CUBE ROOT OF TI	HE ELECTRON	DENSITY		LHO		388
	C						LMO		381
	C	SUBROUTINE	S AND FUNCTION SUB	PROGRAMS RE	QUIRED		LHO		382
	С	NONE.					LMO		383
	С						LMO		384
	C	METHOD					LHO		385
	C	USING T	HE UNIFORM FREE ELI	ECTRON GAS	APPROXIMATIO	N.	LHO		386
	C						LMO		387
3		REAL LNRS					LMD		388
	C						LHO		380
		DATA PI34/	0.6203504908/				LHO		398
3		RS=PI34/CU	IBRDN				LHO		391
4		IF(RS.GT.1	0,0)GO TO 10				LHO		392
10		LNRS=ALOG(R\$)				LMO		393
11		IF(RS.LT.	7) GO TO 20				LHO		394
	C						LMO		395
	C	INTERPO	LATIVE FUNCTION FO	R INTERMEDI	ATE DENSITIE	5.	LHD		396
	C						LHO		397
15		EG=0,01898	*LNRS=0,06156				LHO		398
50		RETURN					LHO		399
	C						LHO		400
	C	LOW ENE	RGY DENSITY				LHO		481
	C					·	LMO		402
21	10	RS2=SORT(R	5)				LHO		403
23		EG=((=0,4/	RS2=1.47)/RS+1.325	/RS2-0,438)	/85		LMO		484
32		RETURN					LMO		405
	C						LHO		406
	C	HIGH EN	ERGY DENSITY				LHO		427
	C						LHO		408
33	56	EG=(2,0311	+0.009+R5)+LNRS=0.1	01*R5=0.048			LNO		489
41		RETURN					LHO		416
42		END					LHO		411

RUN-	107	0		76/04/09	27.13.03	PARKERZZUR	PAGE	NO. 1
	SU	BROUTINE	ELCPOTICOSTA	COSTP , ELDENS	A, ELDENA, NNUCA	NPA .	LHO	4
	1		NTA	POTENA, RADA	, PPOS , SINTA	,ZNUCA ,	LHD	4
	2		ZPOSA	, IREAD , IDENT)		LMO	4
C							LMO	4
C							LHD	4
-	DI	MENSTON	COSTA(1)	(COSTP(1)	ELDENACNR	A.NTAL.	LHD	4
	1		POTENACNRA. NT	A) . RADA(1)	RPOS(1)		LMO	4
	2		SINTA(1)	. TNUCALLY	- 7POSA(1)		I MO	
	ĩ		FI DENHINDA .NT	AL COUNCIL		•	I HO	
•	-		LEDENDINANINI	.,			1.40	
6							LHO	
L					TA HATATES NEED		1 40	4
-	LU		027CA(3735)7C	(3,35) (MALS) 3:	1) + HDF A(3) + HLE.	**************************************	1.40	4
							1.40	
2		DACE					LHO	4
	PU	FUSE					LHO	4
2		CALCULA	TES THE ELECTI	COSTATIC POTENT	IAL AND THE CU	JEE ROUT OF	LHD	4,
C		THE ELE	CTRON DENSITY				LHO	4
С	DE	SCRIPTIO	IN OF PARAMETER	25			LHD	4.
С		COSTA=C	OSINF OF THE	THETA ANGLES			LMO	4
C		COSTP-W	OFK APRAY				LHO	4
C		ELDENH-	CUBE ROOT OF	THE ELECTRON DE	INSITY FOR MOLE	ECULE-B	LHO	4
C		ELDENA-	CURF ROOT OF	THE ELECTRON DE	INSTITY FOR MOLE	ECULE-A	LHO	4
C		NNUCA-N	UMBER OF NUCLI	EI			LHO	4
C		NPA-NUM	BER OF RADIAL	DISTANCES			LHD	4
С		NTA-NUM	BER OF THETA	ANGLES			LMD	4
С		POTENA-	ELECTROSTATIC	POTENTIAL			LHO	4
C		REDA-RA	DIAL DISTANCE	5			LHO	4
c		RPDS-WD	RK ARPAY				LMO	4
r		STUTING	THE DE THE TH	TA ANGLES			I MO	0
ř		ZNICAN	UCLEAR CHARGES	S. S			I MO	
-		ZEOSANN	HICLEAR POSTTI	INS			LMD	
ř		TOFADed	TE TT 16 NOT	I NECESSARY TO	DEAD TH NEW D	TA	I MO	1
		TOCHTER	TE NOLECULES.	AND AND B ADE	TRENTICAL		LHO	
		SUDDOUT	THE HEED	AND AND D ARE	. IDENTICAL		LHO	
		SUSRUUI	THE USED				LHU	
		FFUNC					LHU	
C							LPU	4
C	PAI	RAMETERS	TO BE READ I	N IF IREAD IS P	TOT EQUAL TO B		LHO	4
C	CAU	80 1				-	LMD	4
C		TITLE (COLUMN I CONT	AINS A 1 FOLLOW	TED BY THE TITL	LEJ	LMU	4
C	CAI	S Q8	La monte contra				LMO	4
C		NUMBER	OF NUCLEI AND	THE NUMBER OF	BASIS SET CENT	TERS (IS)	LHO	4
C	CAI	RD 3					LHO	4
C		NUCLEAR	CHARGES (FIR.	,5)			LHO	4
C	CAI	RD 4					LMO	4
C		NUMBER	OF BASIS FUNC	TIONS FOR EACH	CENTER (15)		LHO	4
C	CAI	RD 5					LHO	4
C		CENTERS	FOR THE BASI	S SET WITH THE	FIRST PART OF	THE ARRAY	LMO	4
С	CAI	RD 6					LMO	4
C		PRINCIP	AL QUANTUM NU	HEEP, SURSIDARY	QUANTUM NUMBER	R.	LMD	41
C		RADIAL	EXPONENT. AND	THE COEFFICIEN	T (215, 2F10.5)	LMD	4
ċ							LHD	
c ·							LMO	0.0
•	TF	TREAD F	AC 01 0219.0				1 MD	
	11	sout an St						
							1 7911	

	RU	N=12	7	٥	ELCPO	т	76/04/09	28.13.03	PARKERZZUR	PAGE	ND.	2
34			READ	(5,80)	NUCA, NCE	NA				LHO		467
47			READ	(5,98)(ZNUCACIA	3,14=1,1	NUCAS			LMO		468
64			RFAD	(5,90)(ZPUSACIA), IA=1, M	CENAS			LHO		469
76			READ	(5,80)(NBFA(IA)	, IA=1, NO	ENA)			LHO		470
	C									LMD		471
	С									LWO		472
110			WRIT	E(6,60)						LHO		473
	C									LHO		474
	C								14	LMD		475
117			ICOU	NTEO	NEENA					LHO		476
120		4	1001	NT-TCO	NTAT					LHD		4778
125			NEF=	NAFACTA)					LND		479
131			WRIT	E (6. 158	NBF . ZPO	SA(IA).	NUCACTAL			LMO		480
144			WRIT	E(3.148)					LHO		481
153			00 1	e K=1.	BF					LMD		482
168			ICOU	NT=ICOL	NT+1		,			LHO		483
161			IF(1	COUNT.G	T. SAJHRI	TE (6, 70)				LHO		484
173			IFCI	COUNT . G	T. 50) ICO	UNT=1				LHO		485
177			READ	(5,50)	A(IA,K),	LA(IA,K)	,ZETACIA, K)	CA(IA,K)		LHO		486
225		10	WRIT	E(6,50)	NA(IA,K)	,LACIA,F),ZETA(IA,K)	,CA(IA,K)		LMO		487
	C									LHD		488
	5									LMO		489
	5					FLEA	TROPATE THE CHI	TENTIAL OF H	AND THE	LHD		448
	5						IDENA AND DE	TENA DECRECT	TVELV	LHO	*	491
	ř					14 5	LUENA AND PO	JIENA REOFELI	TACTIC	LHO		492
	è									LHO		493
257	č	211	00 4	a NR=1.	NRA					LHO		495
261			RAER	ADA(NR)						LMD		496
263			00 4	A NT=1.	NTA					LMD		497
265			DENA	= 7. 8						LHO		498
265		-	XERA	SINTA	NTO					LHO		499
265			Z=PA	+COSTAS	NT)					LHD		500
272			00 3	e 14=1.	NCENA			-		LKO		501
513			ZC=Z	-ZPOSA(IA)					LHD		502
276			RPOS	(14)=50	RT(X*X+Z	C+ZC)				LMO		583
310			COST	P(IA) = Z	CIRPOSII	A)				LHO		584
310			NHT =	NUFACIA						LHU		262
314			55-1	0 K=1, P	DF					LHO		500
317	•		TECN	ATTA.K)	GT INFF	PPOSIT	SterNACTA. K	1-11		LND		508
384			TECL	ACTL.KT	GT OIFF	=FF+PN(1	ACTA.KI.COST	PITAN		I HO		500
354		30	DENA	=DENA+F	F+FXP(=7	ETACIA.	+RPOS(IA))	CACIA.KY		LHD		518
492			ELDE	NA (NR. M	TIZDENA	+.333333	33333333			LHO		511
418			IF(I	DENT.EG	. 1) ELDEN	B(NR, NT)	FELDENA(NR.I	(TV		LHO		512
421			CALL	PFUNC	RPOS, COS	TP.ZNUCA	POTL, NNUCAS			LHO		513
431		48	POTE	NA (NR, M	T)=POTL					LHD		514
	C			-						LHD		515
	С									LHO		516
442	1		RETU	RN						LHD		517
	C									LMO		518
	C									LND		519
		50	FORM	AT (215)	-16.2.EI	4.73				LHD		528
		02	FURM	ATT42H						L #0		521

	RUN=1	07	0	ELCPOT	76/84/89	20,13,03	PARKERZZUR	PAGE	NO.	3
		1	491)	LHO		522
	70	FORM	ATC1H1)				LMO		523
	62	FORM	ATT161	5)				LMD		524
	99	FORM	ATCAFI	0.5)				LMO		525
	100	FORM	ATCINT	5)				LMO		526
	110	FORM	ATCSEL	8.51				LHO		527
	120	FORM	ATCESP	.5. 315. F18. 51			<i>'</i>	LHO		528
	130	FORM	ATCH	,215,2F10,5)				LMO		529
	140	FORM	ATCINO	. 3×. 1HN. 4×. 1HL.	X, UHZETA, 7X, 5	HCDEFF)		LMO		530
	150	FOPM	ATC1H?	13.16H BASIS FL	INCTIONS . 15H.Z	COORDINATE	s.F18.5.	LMD		531
		1	17+	WUCLEAR CHARGE	#.F5.1)			MOL		7
	C							1 MO		511
	c							IND		534
443		END						LHO		535

	RUN=1	07 0		76/04/09	20,13,03	PARKERZZUR	PAGE	ND. 1
		SUBROUTIN	E MOMENTICOSTA	.FLDENA .NELECA.	NNUCA .NRA	NTA .	MOL	194
		1	RADA	STNTA .WR	WT TPOSA	TNUCA)	MOL	1941
	C		nave.	for the fact of			MOL	19/1
	ř						MOL	1946
24	•	DIMENSTON	COSTACIO	FIDENALNRA.NT	AL FLMOH(5)		MOL	1956
		1	SINTA(1)	RADA(1)	·NR(1)		MOL	1951
		2	WT(1)	.7P054(1)	.ZNUCA(1)		MOL	195
	C	-					MOL	1951
	C						MOL	1954
	-	DATA THOP	1/6.2831853371	896/			MOL	1959
	C						MOL	1956
	c						MOL	1951
	c	FURPOSE					MOL	195/
	č	CALCUL	ATES THE MOMEN	TS OF THE MOLECU	LE FROM THE	MONOPOLE	MOL	1950
	c	TO THE	HEXADECAPOLE.				MOL	1965
	č	DESCRIPTI	ON OF FARAMETE	RS			MOL	1961
	č	Ensta-	ARRAY CONTAINT	NG THE COSINE OF	THE THETA A	NGLES.	MOL	196
	ē	ELCDEN.	A.THE TABULATE	FIFCTRON DENST	TV		MOL	1961
	č	NELECA	NUMBER OF FLF	TRONS			MOL	196
	ř	NR4=HII	MAFR OF RADIA!	DISTANCES			MOL	1965
	č	NTL-NU	MRER OF THETA	ANGLES			MOL	1944
	r	SINTA	ARRAY CONTAINT	NG THE STNE DE T	HE THETA ANG	I FS	MOL	1961
	r	WPECAD	TAL INTEGRATIO	N WETCHTS	The Tribite and		MOL	1968
	č	AT-THE	TA INTEGRATION	WETGHTS			MOL	1960
	c	TEOSAN	NUPLEAR POSTT	ONS			MOL	1970
	c	71:10 4-1	NUCLEAR CHARGE	3			MOL	1971
	ř	SUBROUTIN	ES USED				MOL	1973
	č	NONE	LO COLD				MOL	1071
	č	HONE					MOL	107/
	č						MOL	1075
24	•	DO 18 1HT	1.5				MOL	1074
10	10	FINDHITH					MOL	1971
30	e	- LL. D. IL INJ					MOL	197
	č						MOL	1970
	ě			TTND THE HOMENTS		I SCTRONTC	MOL	197
	-			ATCENTING THE HUNENTS	DO TO THE E	PECINONIC	MOL	1901
	~			0101011001			MCI	100
	č						MOL	1981
12	c	DO 24 NP=	L.NRA				MOL	108/
37		PARRADAIN	P)				MOL	1045
37		WEIGHRENR	INRI				MOL	1084
43		DG 28 NTE	L.NTA				MOL	1081
53		COST-COST	ACNTA				MOL	1001
53		roste-ros	1+0057				MOL	1080
51		FURBULA-FI	DENACHD NTS				MOL	1000
53		DHOA-CURC	HAATHUDHAATHRD				MOL	100
53		WEIGHTEWE	TCHPAUTINTS				MOL	1003
53		FLMCH(1)=	FLHOM(1)+RHOA+	WEICHT			MOL	1 2 0 1
51		FINOMESTE	EL MON(2) + PHOA+	KETCHT+PA+COST			MOL	100/
51		PALEPADA	LE. D. LE JERROUME				MOL	1005
53		FLMOMITI		FIGHT+FE RAFRET	Sel 01+0.5+0	A1	MOL	1993
51		DAL = 241 + D	A		n-rentene Jau		MOL	1005
53		EL MONT HIS	EL MOMPHIS LONCAL		1 0140 54041	ANETCHT	MOL	1991
51		DAL +DAL +D	A CONTRACTARDAY		PEDIED STRAL		MOL	1996
53	20	EL MONTES-	A NOME CANDROLL				HOL	1999
23	21	ELMUN(S)E	CLOUM(SJ*RRUA*		-1-30.0433.	CO313/J#8,125	HUL	C008

.

	RUN-	101	,	0	MOMENT	76/04	109 28.	13,03	PARKERZZUR	PAGE	NO.	2
		1	+RA	L						POL		2001
130		1	00 31	0 IMat	,5					MOL		2002
134	3	8	LMO	M(IH):	ELMON(IM) *T	HOPI				MOL		2003
	C									MOL		2004
	c									MOL		2005
	C					SUBSTRACT T	E MOMENTS	DO TO	THE NUCLEAR	MOL		2006
	C					CHARGES.				MOL		2007
	C									MOL		2000
	C									MOL		2009
135		7	CHAI	RGER,F						MOL		2010
137		1	0 4	P IA=	, NNUCA					MOL		2011
147	4	19 7	CHAI	RG=ZCH	APG+ZHUCACI	A 3				MOL		2012
152		ŧ	LMD	H(1)=8	LHOM(1)-ZCH	ARG				MOL		2013
154		1	00 6	R IME	2,5					MOL		2014
161			N=IM.	-1						MOL		2015
161		ŧ	LMC	"(IM):	ELMOM(IM)					MOL	-	2016
161		1	LNM	=0.0						MOL		2017
165		1	00 5	P IA=	. NHUCA					MOL		2018
172	5	0	LNM	=ELNM	ZNUCA(14)+Z	POSA(IA) ++N				MOL		2019
284	6	3 1	LMO	H(IH):	ELNM-ELMOM(IM)				MOL		2856
	C									MOL		2021
	C									MOL		2022
	C					WRITE OUT T	HE ELECTRI	C MOMEN	TS IN ATOMIC	MOL		2023
	C					UNITS.				NOL		2024
	c								*	MOL		2825
	C									KOL		2026
211		,	RIT	E(0,76	65					MOL		2027
214			RIT	E(6.81	(6					FOL		2056
553		٠	RIT	£ (6. 71	CELMOM(IM)	, IM=1,5)				MOL		2029
234			RIT	E(6.16	88)					MOL		2036
	C									NUL		5031
	¢									MOL		2032
243	•	F	RETU	RN						MOL		2033
	C									MOL		2034
	C									HOL		2035
	7	0	ORM	AT (1H	.23HMDHENTS	IN ATOMIC UN	[15]			MOL		2036
	6	19 1	ORM	AT (1H	3. 3x, 8HMONOP	OLE. 7X. 6HDJPO	.E. 6X, 10H0	UADRUPO	DLE, 5X,	MOL		2037
		1		840	CTAPOLE, 4X,	12HHEXADECAPO	,E)			MOL		2038
	ç	1 91	OFM	ATCINE	8,5E14.7)					KOL		2034
	19	0	ORM	ATCINS	.)					MOL		2048
244		ŧ	END							Mal		2841

SUBROUTINE PFUNC(RPOS,COSTP,ZNUCA,POTL,NNUCA) C C C CALCULATES THE POTENTIAL C CALCULATES THE POTENTIAL C CALCULATES THE POTENTIAL C COSTP-ARPAY CONTAINING THE RADIAL DISTANCES FROM THE NUCLEI C COSTP-ARPAY CONTAINING THE COSINE OF THE ANGLES FROM THE NUCLEI: C NUCA-NUCLEAR CHARGES C POTL-RESULTANT POTENTIAL C NNUCA-NUMBER OF NUCLEI C C C C C C C C C C C C C		534 537 538 538 542 542 542 542 544 542 544 547 548 547 548 547 548 547
C C CALCULATES THE POTENTIAL DESCRIPTION OF PARAMETERS C CALCULATE THE ROTENTIAL C COSTP-ARMAY CONTAINING THE RADIAL DISTANCES FROM THE NUCLEI C COSTP-ARMAY CONTAINING THE COSINE OF THE ANGLES FROM THE NUCLEI. C 2NUCA-NUCLEAR CHARGES P POTL-RESULTANT POTENTIAL NNUCA-NUMBER OF NUCLEI C 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C DATA FACT(1)/1,0/ DATA		533441234567855555555555555555555555555555555555
C C PURPOSE C CALCULATES THE POTENTIAL DESCRIPTION OF PARAMETERS R POS-ARRAY CONTAINING THE RADIAL DISTANCES FROM THE NUCLEI C COSTP-ARPAY CONTAINING THE COSINE OF THE ANGLES FROM THE NUCLEI. C NUCLENCE (MARGES POTL-RESULTANT POTENTIAL KNUCA-NUMBER OF NUCLEI C DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C DATA FACT(1)/1,0/ DATA FACT(1)/1,0/ DATA FACT(1)/1,0/ DATA FACT(1)/2,0/ DATA FACT(1)/2,		535444444567855555555555555555555555555555
C PURPOSE C CALCULATES THE POTENTIAL DESCEPTION OF PARAMETERS RPOS-ARRAY CONTAINING THE RADIAL DISTANCES FROM THE NUCLEI C COSTP-ARHAY CONTAINING THE COSINE OF THE ANGLES FROM THE NUCLEI. C NUCLEI. C NUCLEI. C NUCLANUCLEAR CHARGES POTL-RESULTANT POTENTIAL C NNUCA-NUMBER OF NUCLEI C C 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C C 14 C C DATA FACT(1)/1.0/ DATA FACT(1)/1.0/ DATA FACT(1)/1.0/ DATA FACT(1)/1.0/ DATA FACT(2)/2.0/ DATA FACT(2)/2.0/ DATA FACT(1)/120.0/ DATA FACT(1)/120.0/ DATA FACT(1)/150.00.0/ DATA FACT(1)/150.00.0/ DATA FACT(1)/3628000.0/ C C C C C C C C C C C C C C C C C C C		539912234567855555555555555555555555555555555555
C CALCULATE THE POTENTIAL DESCRIPTION OF PARAMETERS C RPOS-ARRAY CONTAINING THE RADIAL DISTANCES FROM THE NUCLEI C CSTP-ARPAY CONTAINING THE COSINE OF THE ANGLES FROM THE NUCLEI. C ZNUCA-NUCLEAR CHARGES POTL-RESULTANT POTENTIAL NNUCA-NUMBER OF NUCLEI C 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C 14 COMMON /BASE/CA(5,35),LA(5,35),NA(5,35),NBFA(5),NCENA,ZETA(5,35) C DATA FACT(1)/1.0/ DATA FACT(2)/2.0/ DATA FACT(2)/2.0/ DATA FACT(3)/6.0/ DATA FACT(3)/4.0/ DATA FACT(3)/4.0/ DATA FACT(3)/4.0/ DATA FACT(3)/4.0/ DATA FACT(3)/4.0/ DATA FACT(3)/4.0/ DATA FACT(3)/4.0/ DATA FACT(3)/4.0/ DATA FACT(3)/4.0/ DATA FACT(10)/362800,0/ C C C C C C C C C C C C C		544434567 554447867 55444787 55555555555555555555555555555
C DESCRIPTION OF PARAMETERS C RPOS-ARRAY CONTAINING THE RADIAL DISTANCES FROM THE NUCLEI C COSTP-ARMAY CONTAINING THE COSINE OF THE ANGLES FROM THE NUCLEI. 2NUCA-NUCLEAR CHARGES C POTL-RESULTANT POTENTIAL C NNUCA-NUMBER OF NUCLEI C 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C 14 COMMON /BASE/CA(5,35),LA(5,35),NA(5,35),NBFA(5),NCENA,ZETA(5,35) C C DATA FACT(1)/1.0/ DATA FACT(2)/2.0/ DATA FACT(2)/2.0/ DATA FACT(1)/1.0/ DATA FACT(1)/1.0/ DATA FACT(1)/1.0/ DATA FACT(1)/1.0/ DATA FACT(1)/1.0/ DATA FACT(1)/2.0/ DATA FACT(2)/2.0/ DATA FACT(1)/2.0/ DATA FA		54234 54245 55447 5447 5497 5497 5497
C RPOS.ARRAY CONTAINING THE RADIAL DISTANCES FROM THE NUCLEI C COSTP-ARHAY CONTAINING THE COSINE OF THE ANGLES FROM THE NUCLEI. C NUCLA-NUCLEAR CHARGES P PTL-RESULTANT POTENTIAL C NUCLA-NUMBER OF NUCLEI C DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C C 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C C 14 COMMON /BASE/CA(5,35),LA(5,35),NA(5,35),NBFA(5),NCENA,ZETA(5,35) C C DATA FACT(2)/2,0/ DATA FACT(2)/2,0/ DATA FACT(2)/2,0/ DATA FACT(1)/1,0/ DATA FACT(1)/1,0/ DATA FACT(1)/1,0/ DATA FACT(1)/20,0/ DATA FACT(1)/20,0/ DATA FACT(1)/20,0/ DATA FACT(1)/3040,0/ DATA FACT(1)/362680,0/ C C C C C C C C C C C C C C C		543 545 5445 5545 5545 559 559
C COSTD-ANDAY CONTAINING THE COSINE OF THE ANGLES FROM THE NUCLEI. NUCLEI. NUCA-NUCLEAR CHARGES POTL-RESULTANT POTENTIAL NUCA-NUMBER OF NUCLEI C 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C C 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C C 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C C 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C C 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C C 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C C C C C C C C C C C C C	LL,LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	543 545 545 546 547 548 549 550
C NUCLEI. C 2NUCA-NUCLEAR CHARGES C POTL-RESULTANT POTENTIAL NUCA-NUMBER OF NUCLEI C 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C 14 COMMON /BASE/CA(5,35),LA(5,35).NA(5,35),NBFA(5),NCENA,ZETA(5,35) C DATA FACT(1)/1.0/ DATA FACT(2)/2.0/ DATA FACT(2)/2.0/ DATA FACT(3)/6.7/ DATA FACT(3)/6.7/ DATA FACT(4)/20.0/ DATA FACT(5)/120.0/ DATA FACT(5)/120.0/ DATA FACT(1)/5040.0/ DATA FACT(1)/362800.0/ C C C C C C C C C C C C C	L # 0 L # 0	544 545 546 547 548 549 550
C 2NUCLANULLEAN CHARGES C POTL-RESULTANT POTENTIAL C NNUCA-NUMBER OF NUCLEI C 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C 14 COMMON /BASE/CA(5,35),LA(5,35),NA(5,35),NBFA(5),NCENA,ZETA(5,35) C DATA FACT(1)/1.0/ DATA FACT(2)/2.0/ DATA FACT(2)/2.0/ DATA FACT(3)/6.0/ DATA FACT(3)/4.0/ DATA FACT(3)/20.0/ DATA FACT(3)/20.0/ DATA FACT(3)/20.0/ DATA FACT(3)/20.0/ DATA FACT(3)/20.0/ DATA FACT(3)/20.0/ DATA FACT(3)/20.0/ DATA FACT(1)/362800.0/ C C C C C C C C C C C C C	LHO LHO LHO LHO LHO LHO LHO LHO LHO	545 547 548 549 550
C POTLARESULTANT POTENTIAL C NNUCA-NUMBER OF NUCLEI 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C 14 DIMENSION COSTP(1),FACT(10),RPOS(1),ZNUCA(1) C 14 DIMENSION /BASE/CA(5,35),LA(5,35),NA(5,35),NBFA(5),NCENA,ZETA(5,35) C DATA FACT(1)/1,0/ DATA FACT(2)/2,0/ DATA FACT(2)/2,0/ DATA FACT(3)/6,0/ DATA FACT(3)/4,0/ DATA FACT(3)/20,0/ DATA FACT(1)/20,0/ DATA FACT(1)/20,0/ DATA FACT(1)/20,0/ DATA FACT(1)/20,0/ DATA FACT(1)/20,0/ DATA FACT(1)/3620,0/ DATA FACT(10)/36200,0/ C C C C C C C C C C C C C	LH0 LH0 LH0 LH0 LH0 LH0 LH0	547 548 549 550
C C C C C C C C C C C C C C C C C C C	LH0 LH0 LH0 LH0 LH0 LH0	548
C 14 DIMENSION COSTP(1), FACT(10), RPOS(1), ZNUCA(1) C 14 COMMON /BASE/CA(5,35), LA(5,35), NA(5,35), NBFA(5), NCENA, ZETA(5,35) C DATA FACT(1)/1,0/ DATA FACT(2)/2,0/ DATA FACT(3)/6,0/ DATA FACT(3)/6,0/ DATA FACT(3)/20,0/ DATA FACT(1)/50,0/ DATA FACT(7)/5040,0/ DATA FACT(7)/5040,0/ DATA FACT(7)/5040,0/ DATA FACT(10)/362800,0/ C C C C C C C C C C C C C	LH0 LH0 LH0 LH0 LH0	549
14 DJMENSION COSTP(1), FACT(10), RPOS(1), ZNUCA(1) C C 14 COMMON /BASE/CA(5, 35), LA(5, 35), NA(5, 35), NBFA(5), NCENA, ZETA(5, 35) C DATA FACT(1)/1.0/ DATA FACT(2)/2.0/ DATA FACT(2)/2.0/ DATA FACT(3)/6.0/ DATA FACT(3)/20.0/ DATA FACT(5)/120.0/ DATA FACT(5)/20.0/ DATA FACT(7)/5040.0/ DATA FACT(7)/5040.0/ DATA FACT(10)/3628800.0/ C C C C C C C C C C C C C	LH0 LH0 LH0	550
C C 14 C C 14 C C 14 C C DATA FACT(1)/1.0/ DATA FACT(2)/2.0/ DATA FACT(2)/2.0/ DATA FACT(3)/6.7/ DATA FACT(3)/6.7/ DATA FACT(1)/20.0/ DATA FACT(10)/362800.0/ C C C C C C C C C C C C C	LHO LHO	550
C 14 COMMON /BASE/CA(5,35),LA(5,35),NA(5,35),NBFA(5),NCENA,ZETA(5,35) C DATA FACT(1)/1.0/ DATA FACT(2)/2.0/ DATA FACT(3)/6.7/ DATA FACT(3)/4.0/ DATA FACT(5)/120.0/ DATA FACT(5)/120.0/ DATA FACT(5)/120.0/ DATA FACT(5)/20.0/ DATA FACT(1)/5040.0/ DATA FACT(1)/5040.0/ DATA FACT(1)/56268.0/ DATA FACT(10)/3626800.0/ C C C C C C C C C C C C C	LHO	
14 COMMON /BASE/CA(5,35),LA(5,35),NA(5,35),NBFA(5),NCENA,ZETA(5,35) C DATA FACT(1)/1.0/ DATA FACT(2)/2.0/ DATA FACT(3)/6.7/ DATA FACT(3)/20.0/ DATA FACT(5)/120.0/ DATA FACT(5)/120.0/ DATA FACT(7)/5040.0/ DATA FACT(7)/5040.0/ DATA FACT(7)/362800.0/ C C C C C C C C C C C C C	LHO	551
C C DATA FACT(1)/1.0/ DATA FACT(2)/2.0/ DATA FACT(3)/6.7/ DATA FACT(4)/20.0/ DATA FACT(5)/120.0/ DATA FACT(5)/720.0/ DATA FACT(7)/5040.0/ DATA FACT(7)/5040.0/ DATA FACT(7)/5040.0/ DATA FACT(7)/5040.0/ DATA FACT(10)/362800.0/ C C C C C C C C C C C C C		551
C DATA FACT(1)/1.0/ DATA FACT(2)/2.0/ DATA FACT(3)/6.7/ DATA FACT(1)/20.0/ DATA FACT(5)/120.0/ DATA FACT(5)/120.0/ DATA FACT(5)/40.20,0/ DATA FACT(7)/5040.0/ DATA FACT(10)/362800.0/ C C C C C C C C C C C C C	1 HO	554
DATA FACT(1)/1.0/ DATA FACT(2)/2.0/ DATA FACT(3)/6.7/ DATA FACT(3)/6.7/ DATA FACT(5)/120.0/ DATA FACT(5)/120.0/ DATA FACT(5)/120.0/ DATA FACT(5)/120.0/ DATA FACT(5)/40.20.0/ DATA FACT(1)/40.20.0/ DATA FACT(10)/362600.0/ C C C C C C C C C C C C C	I MO	555
DATA FACT(2)/2,0/ DATA FACT(3)/6,7/ DATA FACT(4)/20,0/ DATA FACT(5)/120,0/ DATA FACT(5)/120,0/ DATA FACT(7)/5040,0/ DATA FACT(7)/5040,0/ DATA FACT(7)/5640,0/ DATA FACT(10)/362800,0/ C C C C C C C C C C C C C	LMO	556
DATA FACT(3)/6,6/ DATA FACT(4)/20,8/ DATA FACT(5)/120,8/ DATA FACT(5)/720,8/ DATA FACT(7)/5040,8/ DATA FACT(7)/5040,8/ DATA FACT(7)/36288,0/ DATA FACT(10)/3628800,0/ C C C C C C C C C C C C C	LMO	557
DATA FACT(4)/24,8/ DATA FACT(5)/128,8/ DATA FACT(5)/728,8/ DATA FACT(7)/5040,8/ DATA FACT(7)/49328,8/ DATA FACT(9)/3628808,8/ C C C C C C C C C C C C C	LHO	558
DATA FACT(5)/120,0/ DATA FACT(6)/720,0/ DATA FACT(7)/5040,0/ DATA FACT(7)/40270,0/ DATA FACT(9)/362500,0/ C C C C C C C C C C C C C	LHD	559
DATA FACT(6)/720,0/ DATA FACT(7)/5040,0/ DATA FACT(7)/5040,0/ DATA FACT(10)/403P8,0/ DATA FACT(10)/362800,0/ C C C C C C C C C C C C C C C C C C C	LMD	560
DATA FACT(7)/5040.0/ DATA FACT(8)/40320.0/ DATA FACT(9)/362800.0/ DATA FACT(10)/362800.0/ C C C C C C C C C C C C C C C C C C C	LHO	561
DATA FACT(R)/403PR.0/ DATA FACT(9)/362580.0/ DATA FACT(10)/3628800.0/ C C C C C CALCULATE THE ELECTROSTATIC POTENTIAL C C CALCULATE THE ELECTROSTATIC POTENTIAL C DF THE ELECTRON CLOUD.	LMD	562
DATA FACT(9)/362680.0/ DATA FACT(10)/3626800.0/ C DATA FOURPI/12.5663706/ C C C C C C C C C C C C C C C C C C C	i,MO	563
DATA FACT(10)/3628800,0/ C DATA FOURPI/12,5663706/ C C C C C C C C C C C CALCULATE THE ELECTROSTATIC POTENTIAL D C D C D C D C D C C C C C C C C C C	LHD	504
C DATA FOURPI/12,5663706/ C C C C C C C C C C C C C C C C C C C	LMO	565
CALCULATE THE ELECTROSTATIC POTENTIAL C C CALCULATE THE ELECTROSTATIC POTENTIAL C DF THE ELECTRON CLOUD.	LMD	566
C C C C C C C C C C C C C C C C C C C	LHO	567
C CALCULATE THE ELECTROSTATIC POTENTIAL C DF THE ELECTRON CLOUD.	LHD	568
C CALCULATE THE ELECTROSTATIC POTENTIAL I C DF THE ELECTRON CLOUD.	LHO	569
C DF THE ELECTRON CLOUD,	LNO	578
	LHO	571
C	LMD	572
c	LMO	573
14 POTL=0.0	LHO	574
14 DD 47 IATI, NCENA	LHO	575
17 NBr ENSFA(IA)	1-10	5/6
1/ RALFBIERPOSTA	Leo	5/7
1/ CALPBIELDSTP(IA)	LHU	5/6
	LFU	5/4
	LAU	208
	LED	583
	1 40	581
	IND	580
56 P7F11±1.0/97F7	IMD	585
56 NKIENKEIKE	1.00	586
56 NKMLKINK-LK	LMD	587
56 TERM1=FACT(NK1)+RZETI++(NK+LK+2)	LHO	588
56 TFRM2=RZETI=+(NK=LK+1)	LMD	589
56 NKLKINKeLKel	LMD	598

	RUN-1	7	0	PFUNC	76194189	20.13.03	PARKERZZUR	PAGE	NO.	2
100		IFC	NKLK.LI	0) CO TO 20				LHO		591
105		DO	10 M=1	NKLK				LMO		592
114		NKM	NKMLK	- 4				LMD		593
114	1 61	TER	MZ=TER	M2+R7ETI++(M+1)	FACT (NKM)			LHD		594
132	20	TEP	HZ=TERI	PAFACT (NKHLK)				LMD		595
132		TER	MJ=PZE'	11++(NK+1K+2)				LMD		596
132		NKL	K=NK+L	< Contract of the second s				LHO		597
143		DO	30 H=1.	NKLK				LMD		598
152		NKM	NK1-M					LHO		599
152	30	TFR	MJ=TER	43+RZETI++(M+1)	FACT (NKM)			LMO		620
163		TER	MISTER	M3*FACT(NK1)				LMO		681
170	40	POT	L=POTL	COLF & (TERM1+EX	P(-RZET)+(TERM2	-TERHS))		LMO		672
211	50	POT	SPOTL	FOUPPI				LHO		603
	C							LMO		674
	c							LMD		625
	с			I	NCLUDE THE ELEC	TPOSTATIC PC	TENTIAL	LMO		626
	C			D	D TO THE NUCLEI	OF MOLECULE	-A.	LHO		687
	C							LMD		628
	C							LMO		689
213		00	60 IA=	, NNUCA				LMO		610
216	60	POT	=POTL.	ZNUCA(IA)/RPOS	(IA)			LMO		611
155		RETI	URN					LMO		612
222		END						LMD		613

	RUN=1	87	0		76/04/04	20,13.03	PARKERZZUR	PAGE	NO.	1
		FUN	CTION PN(N	COST)				LMO		61
	C CA	LCUL	ATES THE NO	TH LEGENDRE	POLYNOMIAL AT	COST		LMO		61
6		DIM	ENSION P(9)	5)				LMD		614
6		NP1	EN+1					LMD		61
6		P(1	1=1.0					LMD		611
6		519)=COST		15.			LMD		61
11		IFC	N=1338,38,	10				LMD		621
13	10	00	20 1=3, NP1					LMD		62
23		IM1	=1=1					LMD		621
23		IM2	=1=2					LMO		62
23		COS	TP=COST+P([M1)				LMO		62
23	28	PII)=COSTP=P(M2)+COSTP+(COSTP-P(IM2))/	FLOAT(IM1)		LMO		629
40	30	PNE	P(NP1)					LMD		620
42		RET	URN					LMO		62'
43		END						LMD		621

RUN-18	7 0		76/04/09	20,13,6	3 PARKERZZUR	PAGE	ND.	1
	SUBROUTINE	QUADSE POTNB, COSP.	, COST/ ,	COSTB , COS	TP , CPHIS , CTHETS	LHO		629
1		,CTHET2, DELT	AR, DELTAT,	EDENA , EDE	NB , ECORR , ECOUL	LHO		632
2		EKIN ELDE	VA, ELDENH,	EXCH , NEL	ECA, NELECB, NNUCA	LHO		631
3		, NNUCB , NPA	, NRA ,	NES ,NT	,NTB ,POTENB	LHO		632
4		,R ,RPOS	, RADA ,	RADE , SEL	F ,SINPA ,SINTA	LMO		633
5		,SPHI1 ,STHE	1, STHET2,	NP ,WR	, WT , ZPOSA	LMO		634
6		, ZPOSE , ZNUC	, ZNUCE ,	RBEGN , IDE	NT .B)	LHO		635
C						LHO		636
C	POTNB-P	OTFNTIAL MATRIX OF	MOLECULE.	8		LMD		637
C	COSPA-C	OSINF OF THE PHI II	TEGRATION	ANGLES		LNO		638
C	COSTA-C	OSTINE OF THE THET.	INTEGRAT	ION ANGLES	3	LMO		639
C	COSTP=W	ORK ARRAY				LHO		648
C	CPHI1=C	DSINE OF PHI1				LMO		641
C	CTHET1-	COSINE OF THETAL				LHO		642
C	CTHET2.	COSINE OF THETA 2				LHO		643
C	DELTAR	RADIAL INCREMENT				LMO		644
C	DELTATO	THETA INCREMENT				LMD		645
C	F.DENA=C	UBE ROOT OF THE ELI	CTRON DEN	SITY OF MO	DLECULE-A TABULATED	LNO		646
C	E	GUIDISANTLY				LMO		647
C	EDENB-C	UBE ROOT OF THE ELI	CTRON DEN	SITY OF MO	DLECULE-B TABULATED	LHO		648
C	E	GUIDISANTLY				LNO		649
C	ECOPR-C	GRRELATION ENERGY				LHO		658
C	COULOMB	IC ENERGY				LMO		651
C	EKIN=KI	NETIC FNERGY				LHO		652
C	ELDENA-	CUBE ROOT OF THE EL	ECTRON DE	NSITY FCR	NOLECULE=A	LHO		653
C		AT THE INTEGRATION	POINTS			LNO		654
C	ELDEN8.	CUBE FOOT OF THE EL	ECTRON DE	NSITY FOR	MOLECULE=B	LHO		655
C		AT THE INTEGRATION	POINTS			LHD		656
C	EXCH-EX	CHANGE ENERGY				LHG		657
£	NELECA-	NUMBER OF ELECTRONS	ON MOLEC	ULEWA		LHO		658
C	NELECB-	NUMBER OF ELECTRONS	ON MOLEC	ULE-B		LHD		659
C	NNUCA-N	UMPER OF NUCLEI IN	MOLECULE.	4		LHO		668
C	NUMBER	OF NUCLEI IN MOLECU	JLE+B			LMO		661
C	NPA-NUM	BEP OF PHI INTEGRA	TION POINT	5		LMO		662
c	NRANUM	PER OF PADIAL INTER	RATION PO	INTS .		LMO		663
C	NRA-NUM	BER OF EQUIDISTANT	RADIAL PO	INTS		LHO		664
C	NTR-NUM	BER OF EQUIDISTANT	THETA POI	NTS		LMO		665
C	POTENR.	POTENTIAL OF MOLECI	ILE-B TABL	LATED AT 1	THE	LHO		666
C		INTEGRATION POINTS				LHO		667
C	R-DISTA	NCE RETWEEN THE CEI	TER OF MA	SSES		LHO		668
C	RADA-RA	DIAL INTEGRATION PO	DINTS			LMO		669
0	SELF-SE	LF ENERGY CORRECTI	N			LHO		678
C	SINPA-S	INE OF THE PHI INTE	GRATION P	DINTS		LHO		671
С	SINTA-S	INE OF THE THETA I	TEGRATION	POINTS		LHO		672
C	SPH01-S	INE OF PHI1				LHO		673
C	STHET1-	SINE OF THETA 1				LHO		674
C	STHET2-	SINE OF THEAT 2				LMO		675
C	WP-RADT	AL INTEGRATION WEIL	GHTS			LHO		676
C	WP-PHI.	INTEGRATION WEIGHTS	5			LMO		677
C	WT-THET	A INTEGRATION WEIGH	TS			LHO		678
C	ZPOSA-N	UCLEAR POSITIONS OF	MOLECULE	- A		LMO		679
c	ZPOSB-N	UCLEAR POSITIONS OF	MOLECULE	-B		LMD		688
C	ZNUCA-N	UCLEAR CHARGES OF	OLECULE-/			LHD		681
C	ZNUCB=N	UCLEAR CHARGES OF	OLECULE-B			LHO		662
c	IDENT=1	IF THE MOLECULE AN	E IDENTIC	AL		LMO		. 683

	RUN=107 0		76/04/09	20.13.03	PARKERZZUR	PAGE	NO.	2
	C B-LENGH	T OF THE BEMI-MA.	OR ANIS OF THE	ELLIPSE		LHO		684
	с.					LHO		685
70	DIMENSION (COSPA(1) .C	OSTA(1)	, POTENB(NR	A,NTA),	LHD		686
	1 0	COSTB(1) ,C	OSTP(1)	, ELDENA(NR	A, NTAJ,	LHD		687
	2	ELDENB(NRA, NTA), F	OTNB (NRB, NTB)	,RADA(1)		LMD		688
	3	RADB(1) .F	POS(1)	SINPA(1)		LMD		689
	4	SINTA(1)	P(1)	, WR(1)		LPO		690
	5	wT(1) /2	POSA(1)	,ZPOSB(1)		LMD		691
	6	ZNUCATI)	NUCH(1)	PEDENALNE	PN18) P	LHU		692
	, ,	EDENB(NKB, NTB)				LHU		693
						LHO		694
70	COMMON (B)	SE / CA/ 5. 161.1 A/ 5.	151. NATE	REATES .NEE	R. 7574/5.351	LND		484
10	CONNON 7 BAS		3311 MAC 31 3311			I HD		407
	c					I NO		608
78	LOGICAL TES	37				LMD		699
	C					LMO		788
	č					LHO		781
	DATA PI/3.	1415926535898/				LHD		782
	DATA THOPI	/6,2831853071396/				L 10		783
	DATA CE/-,	73855870636202/				LHO		784
	DATA CK/2.	6712342001881/				LMO		705
	C					LMO		786
-	C					PHS PHS		787
70	NRAMIENRA	•1				LMD		788
70	NTAMIENTAM!	1				LHO		789
78	DDR=1.0/DEL	LTAR				LMO		718
70	ODIEL.O/DEL	LTAT				LMU		711
	C .					LHU		712
		THE				LHO		713
	2	NEC	SCADY TN THE	DANE ODMATT		LHO		715
	č .	FROM	A COOPDINATE	SASTEN LEX	TFREN	LHO		716
	6	ON N	DI FCULE-A TO	CORDINAT	F	I HO		717
	ř	SYST	FH CENTERED OF	MOLECULE	- 8.	INC		718
	č	MOLE	CULE-A HAS BEE	N ROTATED	RY	LNG		719
	6	THE	THREE FULLER AN	GLES (PHIL	THET1.PIT	LMO		726
	č	AND	MOLECULE-8 HAS	BEFN HOTA	TED	LHO		721
	č	5Y (0, THET2. 8), TH	E EULER AN	GLES	LHO		722
	c	USED	APE DEFINED	N H. E. RO	SE.	LHO		723
	C	ELEM	FNTARY THEORY	OF ANGULAR		LHO		724
	· C	MOME	NTUM, JOHN WIL	EY AND SON	5,	LHO		725
	c	1957	•			LHO		726
	c					LHO		727
	C				÷ .	LMO		728
70	CC=+CPHI1+U	CTHET1				LMO		729
70	CS= CPHI1=S	STHETI				LHO		738
78	SC==SPHI1=0	CTHET1				LHD		731
70	SS= 3PHI1+S	SIMETI				LHO		732
74	ATELTMET2#L	CDUTI COUTI				1 80		755
70						LNO		715
70	DISPASTNET	2				I MD		735
70	A1=51HF12+0	CC+CTHET2+STHET1				LHO		717
78	83=STHE12+1	SPHII				LHO		738

	RU	N=10	77 0	QUADS	76/84/89	20,13,03	PARKERZZUR	PAGE	NO.	3
70			C3=STHET	2+CS+CTHET2+C	THETI			LMO		739
70			DJ==RaCT	HEIS				LHO		748
	C							LHD		741
	С							LMO		742
	C				CALCULATE THE P.	ART OF THE CO	ULOMBIC	LHO		743
	C				ENERGY WHICH IS	CONSTANT REL	ATIVE TO	LMO		744
	C				THIS NUMERICAL	INTEGRATION,		LMO		745
	C							LMO		746
	C			_				LMG		747
70			CONSTER.	Ø				LHU		748
151			DD 24 1A	BI, NNUCA				LMO		749
135			FASZNUCA	(IA) / FLUATINE	LELAJ			LHO		750
155			LPELPUSA	TT NEENB				LHO		751
140			VELTA-7P	+ 1 + 11				LHO		751
142			VRFT417D	224				I HO		754
142			7BETA=7P	+C3+D3-ZPOSB(181			LMO		755
153			PPOS(IA)	=SORT(XBETA+X	BETA+YBETA+YBETA+	ZBETA+ZBETA)		LMD	•	756
164		10	COSTPUTB)=ZHETA/PPOSS	18)			LMD		751
171			CALL PEU	INC (RPOS, COSTP	ZNUCS.POTL. NNUCB)		LMO		758
201		85	CONST=CO	INST-FA+POTL				LMD		759
	C							LHO		768
	С							LHD		761
206			CONST2=0	.0				LMD		762
207			DO AN IA	=1, NNUCA				LMO		763
210			FASZNUCA	(IA)/FLOAT(NE	LECAT			LMO		764
510			ZPEZPOSA	(IA)				LMO		765
215			DO 33 1P	= I . NCE NB				LMC		768
217			XBETA=ZP	* (= [C * STHET2=	STHET1+CTHET2) .R.	STHETI		LMO		767
217			THE I AS - Z	PESPHIJESTHET	-			LHO		768
211			ZBETAIZP	+LLSESIMEIZAL	THETISCIMET2JARAC	TRE I LEZPUSDEL	5)	LHO		764
261		50	COSTRIT	S-THETA /DDOG/	TR)	LOLIA#20LIAJ		LND		772
257		30	CALL PEU	NC (PPOS, COST	TNUCH POTI NUICE	`		LHO		775
267		40	CONSTREE	ONST2=F5+POTI	12 HOLDIFOIL, HHOLD			1 MD		777
201	C							LMD		774
	č							LMD		775
	C				INITILIZATIONS.			LHD		776
	C				•			LMD		777
	C							LMD		778
276			EXCH=0.0	1				LHO		779
276			FKIN=0.0)				LHO		788
276			ECORR=0,	0				LMO		781
276			ECOUL=0.	0				- LMO		782
276			DENAZO.0					LMC		783
276			DEN827,0					LMO		784
216			A=R/2.0+	8 .				LMD		765
210			0854=1.0	(6=8)				LHU		786
270			UASUEL 0					LMD		787
210			DMIX-SCO	TIDATIN GADAD				LHO		780
130			ND TENDA					LNO		700
320			SWPENPEL	1				L MO		761
323			TECARSO	THET13. EQ. 1. 0	AND. ABS(CTHET2)	P. 1. 8160 TO	50	LMO		702
340			GO TO 60					LMD		791

	RU	N=16	7 0	QUAD3	76/04/09	20.13.03	PARKERZZUR	PAGE	ND. 4	1
348		50	NPIEI					LHO		794
340			WP(1) STHOP					LMO		79
343		60	CONTINUE					LHO		796
-	с	-						LHO		791
	Ċ							LMO		791
	č				RADIAL INTEGRATI	ON LOOP.		LMO		79
	C							LMO		80
	C							LMD		82
343			DO 236 NR=1	.NRA				LMD		8.83
345			RATRADAINR					LHO		801
347			TECHA GT	AXIGO TO 24	0			LHO		89
352			WEIGHRENR()	R)	-			LHO		80
	c							LHO		80
	č							LMO		86
	č				THETA INTEGRATIC	N LOOP.		I NO		8.01
	ě				THEIR INTEGRATIO			LMD		
	č							IND		AL
355			DO 214 NT=	.NTA				I HO		81
363			CUBREA-FI DE	NACNR. NTY				LHD		81
141			DAST-DAST	TATATA				IMO		81
161			7A-DA+FDST	INTS				IMD		A1/
363			POTI NEDOTEN	BIND NTY				I ND		811
363			PLOASCHERM	AFURRUAAFUR	DHA			L MD		814
303			WETCHTALLUBRA					IND		
303			ECONCIPCION DUOI	ACCACURDUAN				LHD		611
100			EURHDASKAU	-CUODHA				LHO		844
400			RHUNASERHUI					LHD		830
400			RECEDENT EL	ASTLUCATA				LHD		83
40.5			IF LIDENI EL	101160 10 /t				1 40		021
414			Lernib=tLut	NO (NE / NI)	2408			LND		020
414			RAUGASLERA	AFC/COPHOR	RHUB			LNO		83/
410			ERRUPERHUN!	ACDOLLERAUDI				LND		830
422			RUB43ERHUB					140		824
422			RUDD 3=RUD4.	SELORIUD				LHO		825
424		70	GU TU BU					LHO		06
430		10	LERNUSELUER					LHO		820
430			RHUBNERHUA					LHU		02
430			ERHUBIEGRAG					LAU		0.31
450			RUP4SERHUA	13				LHO		031
430			RUBSSERMUA					LHO		034
	5							LNO		03.
						1.000		LHU		034
	C				PHI INTEGRATION	LUUP		LAU		03:
	C							LHU		030
	C							LHO		831
437		86	DO 220 NP=	, NP I				LMO		836
441			WEIGHPEWEIG	SHT#WP(NP)				LHO		831
	C							LMO		544
	C							LHO		84
	C				CALCULATE THE CA	RTESIAN COOP	DINATE	LHO		84
	C				FOR THE INTEGRAT	ION POINT RE	LATIVE	LMO		84
	C				TO MOLECULE .A			LHD		844
	C							LMO		84
deres -	C							LHD		846
441			XA=RAST+COS	SPA(NP)				LHD		84
441			YAERAST*SI	VPA(NP)				LHD		84

	RUN=10	7	0	QUAD3	76/04/29	20,13,03	PARKERZZUR	PAGE	NO.	5	
441		X=XA	+CC+VA	·SPHI1+ZA+CS				LHO			849
441		Y=XA	+9C-YA	+CPH11+ZA+55				LMD			858
441		ZEXA	*STHET	1+ZA+CTHET1=	RHALF			LHD			851
465		IF(Z	.GT.P.	P) GO TO 150				LMO			852
467		Y59=	Y+Y		•			LHO			853
467		JF(((X+X+Y	\$0) * C550+Z+Z	+OASO), GT. 1, 0) G	O TO 150		LHO			854
	c				WITHIN REGION	I		LMO			855
	c							LHD			856
	C							LHD			857
	C				TRANSFORM TO C	CORDINATES REL	ATIVE	LMO			858
	C				TO MOLECULE.8.			LMD			859
	C							LMO			860
	C							LMU			861
477		XBEX	ACTHET	2+ (HHALP=Z)#	STHETE			LHU			202
510		1951	COTINE	C+(L+RHALF)=				LHO			003
515		FTHE	18-784	DR	.,			LHD			84.8
517		1510	BITE	RECNIGO TO O	a			LMD			844
211	r	Ti fu	O.LI.		0			LHO			84.7
	r.							LMD			86.8
	č				DO A THO DIMEN	STONAL STERLTN	65	I MO			869
	č				INTERPOLATION	FOR THE ELECTR	ON	LHO			870
	c				DENSITY AND PO	TENTIAL OF HOL	ECULE-B	LMD			871
	C				TYPE INTERPOLA	TION FOR THE E	LECTRON	LMD			872
	C				DENSITY OF MOL	ECULE-B		LMO			873
	C							LMO			874
	C							LMO			875
526		HRE	RR.RBE	GN) + 00R+2.5				LHO			876
520		**=(CTHETE	+DELTAT+1.0)	+0DT+0.5			LMO			877
526		MRP1	=MR+1					LMO			878
526		WBWI	=MR=1					LMO			879
525		RB=(RB-RAD	B(MR)) +ODR				LHO			880
526		CTHE	TB=(CT	HETB-COSTB(M	T))*0DT			LMO			881
526		MTPI	=MT+1					LHO			682
526		NTHI	=HT=1					LMD			883
526		TFCO	=EDENE	(MR.MT)+2.0				LMO			884
520		TPRO	SPOTNE	(PR, MI)#2.0				LMO			885
520		+10=	EDENHO	MRP1, MT)				LMD			886
520		PINE	PUINH	PKP1, M11				LMD			087
526		DMIN	-BOTLE	(HOME MTS				LHO			000
601		TECH	TDI CT	LTRIMTRIENT!	9			LMO			808
634		TEIM	TM1 1 T	11HTH4#4	5			LHO			801
615		Fai=	FOFNAC	MR. MTP1)				LMD			ROZ
615		PO1=	POTNEC	MR. MTP1)				LMD			893
615		FAMI	FDENE	(MR.MTM1)				LMD			894
515		PAMI	POTNE	(MR. MTH1)				LMO			895
615		CUBR	H8=0.5	* (TF88+58*(F	10-FH10+RB+(F10	+FM18-TF08))		LHO			896
	1		+CT	#E18+(F01=F0	+1+CTHETR+(FP1+	F241-TF80)))		LMO			897
615		POTL	=0.5+0	TPPR+RB+(P1R	PM12+RB+(P18+P	M10-TP00))		LMO			898
	1		+ CT	HETBA (PO1-PO	H1+CTHETB+(PO1+	PAMI-TPROII)		LMO			899
615		RHOB	=CUBRH	H+CUBRHB+CUBI	RHB			LMO			988
664		GO T	0 143					LMO			981
	C							LHO			982
	C							LMC			983

	RL	JN=18	87 0	QUADS		76/84/89	20.13.03	PARKERZZUR	PAGE	NO.	6	
	c				DO A L	INEAR INTE	RPOLATION		LHO		98	4
	C				ON THE	COSINE OF	THETA AND A	N	LMO		98	5
	C				EXPONE	NTIAL INTE	RPOLATION ON	R.	LMO		98	6
	C							7	LHG		90	7
	C								LMO		90	6
678		98	DO 183 MM	FE1, NRAM1					LMO		90	9
672			MRENRASMA	R ·					LHO		91	e
673		160	IF (RADA(M	P),LT,RB)GO	TO 110				LHO		91	1
702		113	DO 120 MM	T=1,NTAM1					LHO		91	2
704			MTENTA	IT					LHO		91	3
795		150	IF (COSTA (HT), LT. CTHET	B)GO TO	130			LHD		91	4
723		130	MRP1=MP+1						LHO		91	5
723			MTP1=MT+1						LMO		91	6
723			ZETMT=(CC	STA(MT)=CTHE	TB)/(COS	TA(MTP1)=C	OSTA(MT))		LHO		91	7
723			ZETMR=(RA	DA(MR)=RB)/(RADA(MHP	1) = PADA (MR	222		LHO		91	8
723			RHRMT=ELC	ENH(MR,MT)+Z	ETMT+(F.L.	DENB (MP, MT)=ELDENB(MR,	PTP1))	LMO		91	9
252			PORPISPOI	ENH(MP+*T)+7	ETMT+(PC	TENA (MP.MT) - POTENB(MP,	PTP1))	LHO		92	0
723			RHRMIT=FL	DENBEMRDI, MT)+ZETMT#	(FLDENB(MA	P1, MT; -ELDEN	B(MRP1, MTP1))	LHO		92	1
723			PORMIT=PO	TENB (MRP1, MT)+ZETMT*	(FOTENB(MH	P1, MT)=POTEN	E(MRP1, MTP1))	LHO		95	2
774			CUBRHASRH	RMT + EXP (ZETH	R + ALOG (R	HRMT/RHRM1	T3)		LMO		92	3
1995			POTL=POPM	T+ZETMR* (POR	MT-PORM1	7)			LHO		95	4
1885			RHOB=CU3R	HB*CUBRHE*CU	BRHB				LHO		92	5
	C								LMO		92	6
	С								LHO		92	7
	C				END OF	INTERPOLA	TION SCHENE	IN	LHO		85	8
	C				REGION	I.			LHO		92	9
	C								LND		93	8
	С								LHO		93	1
1015		142	RHOSUMERH	IOA+RHOB					LHD		93	2
1015			CUBSUMERH	105UM**, 33333	33333333	3			LMD		93	3
1015			ECOUL=ECO	DUL+ (POTL+CON	ST) *RHDA	*WEIGHP			LMO		93	4
1015			HHOB43=CL	IBRH6*RH08					LHD		93	5
1015			RHOS43=CL	IBSUM#RHOSUM	in the second	and the second second			LHD		93	6
1015			EKIN=(CUF	SUMARHOS 43-R	HOA53-CU	BRHB*RHOB4	3) *WEIGHP+EK	IN	LHO		93	7
1041			ECORR=(RH	IOSUM*FGICUBS	UM) - EGRH	OA=RHOB*EG	(CUBRHB)) *WE	IGHP+ECORR	LMO		93	8
1052			EXCH=(RHC	1543-RH0443-R	H0843) * W	EIGHP+EXCH	1		LMD		63	ę
1063		150	X=XA+CTHE	T2+ZA+STHET2					LMD	÷.	94	8
1063			Y=YA						LMD		94	1
1963			ZzeXA±STH	ET2+ZA+CTHET	2+RHALF				LNO		94	2
1074			IF(Z.LT.P	.0)GO TO 220					LMC		94	3
1075			IF(((X*X4	Y#Y]#0850+Z*	Z & DASG),	GT.1.8)GD	10 228		LMU		94	4
	C								LMU		94	5
	C								LHO		94	2
	C			r	WITHIN	REGION 1			LHU		44	7
	C								LHU		94	8
	C								LHU		94	4
1196			XHEX+CC+1	#SL+ [Z+RHALF	J*SINEI1				LHU		95	0
1100			THEXESPHI	Jetechenij.					Lnu		42	1
1100			25=3=15+1	PODAUDAUDAUDA	JELIPEII				LHO		42	Ę
1124			HHESUHI()	TRACTOSTOSTOS	0=201				LHU		42	3
1131			LINEISEZE	DECHINCO TO	140				LFO		*5	14
1133	~		TELER.F.	HBEGNIGO TO	100				LHU		42	2
	C								1.40		75	9
	2				D0 4 T		ONAL STERI TH	C.8	LHO		73	-
					DUAT	NO DIMENSI	DAME DIENEIN		LPU		42	ø

	RI	JN=1	37 0	0	QUAD3	1	76104189	20.13,03	PARKERZZUR	PAGE	NQ.	7
	c					INTERPO	DLATION FO	R THE ELECTR	ON DENSITY	LHD		959
	С					OF MOLE	ECULE-A.			LHO		968
	С									LMO		961
	С									LHO		962
1142			MRE (RE	-RREGN)	+00R+2.5	C				LHO		963
1142			MT=(C)	THE TE+DE	LTAT+1. 2	+0DT+8.	5			LMO		964
1142			MRP1=	R+1						LHO		965
1142			MRM1s	Ret						LHD		966
1142			RBECRE	RADBOM	R1)+00R					LHO		967
1142			CTHETE	SECTHET	B-COSTR(100+((TH				LMO		968
1142			HTPIS	1741						I MO		949
11/12			MTMI	17-1		7				IMO		970
1142			TERRE	DENACHP	. MT1+2 0					I MO		071
11/2			EIGHER	ENACHER	1 MT)					LMO		073
1142			EMIGAL	DENALMO	LINTS					LHO		071
1345			TEAMT	DE NALINA	DINTRA					LHO		7/3
1203			1. (1.01.41	DJHIPIAN	10				LHO		9/4
1210			10 (- [-	1.1.1.17	uluis!					LHU		975
1221			FRIEL	ENACHH	-TP13					LHU		976
1221			FOMIE	DENACHR	, MTM13					LMU		977
1551			CBRHOM	1=0.5*(1	F MA+KA*(F10-FM10	*RB*(F10+F	H10-TF00))		LHU		978
			1	+CTHET	R*(F01=Fi	AM1+ETHE	TB+(F01+F0	M1=TF00)))		LMU		979
1221			RHOTN:	CRRHDA*	CARHDA*C	SRHDA				LMD		982
1544	-		GD TO	210						LWC		981
	С									LHO		982
	ç									LMO		983
	C					DO A LI	INEAR INTE	RPOLATION		LMO		984
	C					ON THE	COSINE OF	THETA AND A	N	LHO		985
	¢					EXPONE	NTIAL INTE	RPOLATION ON	R.	LMO		984
	C									LHD		. 987
	C									LMD		988
1244		162	00 176	MNRE1.	NRAMI					LHO		989
1246			MRENRI	MNR						LMO		990
1247		170	TECRAT	ACMR) .I	T RBIGD	186				LMD		001
1256		180	00 190	MNTT	NTANI					IMD		992
1268		100	MTENT	MNT						1 MO		001
1241		100	TELEDI	TACHTS	-		200			I MO		00/
1377		200	HODIE	In the state of th	LIBCINEI	0,00 10 1	200			LNO		005
12/1		C	MEDICI							LHO		773
1211			-1P10	-1+1				CETAINTSS		LHO		998
12/1			ZEITII	ELUSIAL		101/100		USIALATI		LHO		997
12//			ZEIMKI	E (RADA(R)=45)/(1	RADALARP	I) PRAUA(MR))		LHO		446
1277			REALI	ELDENAL	MH, MI] + 21		UE NA [MH, MI	JELUENAL MK,		LHU		444
12//			RHKH1	SELDERA	(MRPI, MI)+25.101#1	(FLDENA(MR	PIPMIJELUEN	A(MRP1, MIP1))	LHO		1405
1332			CBRHDI	LERHPHITE	EXPIZETM	RAALUGERI	HRMIJRHRMI	133		LMO		1001
1341			RHOAN	CBRHDA*	CARHDA*CI	BRHDA				LMD		1002
	C									LMO		1063
	С							and the second		LMO		1004
	¢					END OF	INTERPOLA	TION SCHEME	IN	LHO		1005
	C					REGION	II.			LMD		1000
	C									LMD		1007
	С									LMO		1006
1346		210	RHOSUN	ARHOAN+	RHOBN					LMO		1009
1346		1.000	CURSU	TRHOSUM	**,33333	333333333	3			LHD		1018
1346			ECOUL	FCOUL+C	POTLNOCO	NST2) +RH	DAN+WEIGHP			LMO		1011
1346			RHOUT	CBRHOA:	RHOAN					LMC		1012
1346			RHOS4	SECUBSUM	*RHDSUM					LHO		1013

	RUN=16	87	C	QUAD3	76/04/09	20.13.03	PARKERZZUR	PAGE	NO.	8
1346		EKIN	CURSU	M+RH0543- R05	53-CHRHOA+2H043		N	LHO		1014
1370		ECOPI	RE (PHOS	UMAEG(CUBSUM)	- ERHOR-RHOAN+E	G(CBRHOA)) **	EIGHP+ECORR	LHD		1015
1492		EXCH	RHOS	3-RH043- R084	3) +WEIGHP+EXCH			LHO		1016
1413	220	CONT	INUE					LMD		1017
1416	230	CONT	INUE					LHO		1018
	C							LHO		1019
	C							LHO		1828
	c			E	NO OF THE NUMER	ICAL INTEGRA	TION,	LHD		1021
	C						•	LHO		1022
	С							LMO		1021
1424	240	EKIN	EKIN+C	K				LHO		1824
1424		EXCH	CE+SEL	F*EXCH				LHO		1025
1424		WP(1	ESWP					LHO		1026
1433		RETU	N					LHO		1027
1434		END						LMO		1928

	RUN=1	87 0		76/04/09	28.13.03	PARKERZZUR	PAGE	NO.	1
		SUBROUTIN	E SELFX(N.SELF)				LHO		1829
	C						LHO		1839
	C						LHO		1031
	c	PURPOSE					LMO		1032
	C	COMPUTES :	SELF EXCHANGE COR	RECTION			LMO		1833
	C						LMD		1034
	C	DESCRIPTI	ON OF PARAMETERS				LHO		1035
	C	N=NUMB	ER OF ELECTRONS.				LMO		1036
	C	SELF TI	HIS IS THE SELF E	NERGY CORRECT	ION ON RETUR	N.	LHO		1037
	C						LMO		1038
	č	SUBROUTIN	ES AND FUNCTION S	UBPROGRAMS RE	QUIRED		LMO		1039
	č	NONE .					LMD		1048
	c						LMO		1041
	č	METHOD					LMD		1042
	č	BY METHOD	OF A.I.M. RAE. C	HEM. PHYS. LE	TT. 18,574 (1973).	LMO		1043
	c	WRITTEN B	Y SHELDON GREEN				LMO		1044
	C						LHO		1045
	C	STATEMENT	FUNCTION DEFINIT	IDNS			LMO		1846
	Ċ						LMO		1847
6		F(X)=((.2	5EP+X+X-1.125E0)+	X+1,0)+X+X+X=	XN		LMO		1048
28		F1(X)=((1	.510+X+X=4.510)+X	+3.0) +X+X			LHO		1849
-	C						LMO		1058
31		ONE3=1.E.	13.EØ		· · · · ·		LMO		1051
31		XN= . 25E0/	FLOAT (N)			1.2	LMO		1852
31		XC=XN++ON	E3				LMO		1853
43	13	DX=F(XO)/	F1(X0)				LMO		1254
44		XO=XO=DX					LMD		1055
45		IF (ABS(DX).GT.1.E-8) GO TO	10			LMO		1056
52		SELF=((=0	NE3+X0+X0+2.E01+X	0-8, E0+0NE3)+	XDel.EF		LMO		1857
69		RETURN	and the second se				LMO		1058
61		END					LHD		1859

	RUN=187	0		7	6/04/09	20	.13,03	PARM	ERZZUR	PAGE	ND.	1
	5	UBROUTINE	SLATECOSTB	, ELDENB	NNUCB	, NRB	, NTB	,RADB		LHO		1060
	1		SINTB	, ZNUCB	, ZPOSB	, IREAD	3			LHD		1861
1	C									LMC		1862
1	с									LHC		1863
55	D	IMENSION	COSTR(1)	ELDE	NB (NRB,	NTB), P.	ADB(1)			LMO		1964
	1		SINTB(1)	, ZNUC	B(1)	, 21	POSB(1)			LMD		1065
1	C									LHD		1066
	C									LHD		1867
22	C	OHMON /BA	SE/CB(5,35),	.8(5,35)	,NB(5,3	15), NBFI	B(5), NC	ENB, ZET	8(5,35)	LHO		1068
	C									LMD		1069
	C									LHD		1070
	C P	URPOSE								LMU		1071
		CALCULA	ITES THE LUNE	RUUT UP	THE EL	ELIRUN	DENSIT	Ŧ		LHO		1072
		ESCAIPIIL	CETNE OF THE	THETA A						LND		18/3
	c r	FLOFHE	CUES POOT OF	THE FIEL	TOLLS	ENETTY				LHO		10/4
	r .	NUICBAN	UMAED OF NUEL	FT LLE		ENGIII	FUR HUI	LECULE		LNO		1075
		NRE-NIL	BEP OF PADIA	DISTAN	FE					LHO		10/0
	r	NTR-NUM	HER OF THETA	ANGLES	era					LMO		1378
	Č	RADS-RA	DIAL DISTANCI	S						IMD		1079
	č	SINTB-S	INE OF THE TH	HETA ANG	ES					LMO		1080
1	c	ZNUCE-N	UCLEAR CHARG	ES.						LNO		1081
	c	ZPOSB-N	UCLEAR POSIT	IONS						LMD		1882
(с	IREAD=0	IF IT IS N	T NECES	SARY TO	READ	IN NEW	DATA		LMO		1083
1	C	SUSROUT	INE USED							LHD		1086
1	c	NONE								LHO		1085
1	C P	ARAMETERS	TO BE READ	IN IF IR	EAD IS	NOT EQU	UAL TO	8		LMC		1086
1	c c	ARD1								LMO		1087
(C	TITLE (COLUMN & CON	TAINS A	1 FOLLO	WED BY	THE TI	TLE)		LNO		1288
(СС	ARD 2								LMO		1089
1	C	NUMBER	OF NUCLEI AN	THE NU	HBER OF	BASIS	SET CE	NTERS ([15]	LMO		1090
	c c	ARD 3	to book and							LMD		1891
1	C	NUCLEAR	CHARGES (F1	8,5)						LMO		1892
1	c c	ARD 4								LMO		1603
	C	CENTERS	FOR THE BAS	IS SET W	ITH THE	FIRST	PART D	F THE A	RRAY	LMO		1094
	C	HAVING	THE CENTERS	AT THE N	UCLEI.	(F10.5)			LMO		1695
	C. C	ARD 5								LMO		1096
	c	NUMBER	OF BASIS FUN	TIONS F	OR EACH	CENTE	R (15)			LMD		1097
	с с	ARD Bears								LMU		1098
		PRINCIP	AL GUANIUM NI	THE COL	CEETOTE	NU CANIL	CH NUMBI			LHU		1644
		FAUIAL	CAPONENTS AND	THE LUI	LEL ILIE	m1 (21)	5, er 10.	21		LHO		1100
										LHO		1101
22	•	FITREAD F	0.0100 TO 20							LHO		1102
(r *	r tinchuşt							*	LHO		1100
	c.									IND		1105
23	R	FAD(5.68)								1 MO		1186
27	R	FAD(5. AP)	NNUCB. NCENB							LMO		1107
42	R	LAD(5,90)	(ZNUCB(IB). I	B=1, NNUC	8)					LMD		1108
57	R	EAD(5, 90)	(ZPOS8(IB). 1	B=1, NCEN	8)					LHC		1109
71	R	EAD(5,80)	(NEFB(18), 18:	1. NCENB)					LHO		1118
1	C		and the second second second							LHO		1111
1	C									LHD		1112
183	H	RITECO.6P	1)							LID		1113
112	N	RITE(6,8P)(N8F8(18),1	BE1, NCEN	B)					LMC		1114

	RU	N-10	7 0	SLATE	75/04/09	20.13.03	PARKERZZUR	PAGE	NO.	2
	c							LMD		1115
	C							LMD		1116
124		1	ICOUNT=0					LHD		1117
125		(0 18 18=1	NCENB				LHD		1118
132		1	COUNT=1CO	UNT+3				LHO		1119
132		1	WAF=NBFB(1	B)				LHD		1120
136			RITE(6,15	?)NBF, ZPCSB(IB),ZNUCB(IB)			LMO		1121
151			RITE (6.14	3)				LMO		1122
169		1	00 18 K=1,	NBF				LHO		1123
165			ICOUNT=ICO	UNT+1				LMD		1124
166			IF (ICDUNT.	GT, 50) #RITE(6,	70)			LMO		1125
200			IF (ICOUNT.	GT. SAJICOUNT=1	time and the second second second			LHD		1126
204		\$	READ(5, 52)	NB(IB,K),LB(IB	,K),ZETB(IB,K),	CB(IB,K)		LMD		1127
232		16	WRITE(6,50	NB(IE, K), LB(I	B, K), ZETB(18, K)	,CB(IB,K)		LMD		1158
	C							LMD		1129
	C							LHO		1130
	ç			T	ABULATE THE ELE	CTRON DEVSIT	Y	LMD		1131
	C			F	OR FOLECULESS,			LMU		1132
	5							LHU		1133
	¢							LHU		1134
264		26 1	00 42 NR 1	NEB				LMU		1155
200		1	DO UN NIEL	NIG				LHU		1150
211			LERADBINK.	1=51N19(N1)				LHO		113/
271			(LERAJH (NH	PCUSIS(NT)				LHU		1150
2/1			ISU=XC+XC					LHU		1139
2/1			DENBER.H	NEEUS				LHO		1140
211			0 30 1821	NLEND				LHD		1141
300			VAFENSFBLI	5)				LHO		1140
306			-70-7005P	101				LNO		1100
277			B-SOPT/VE	107				I MC		1144
211			THE TRATION	B				LNO		1106
310				3				LHD		44/19
216			FINBITE K		(NR(18-K)-1)			I MD		1148
174			FILBITE.K	CT ANFE-FF.P	NIL BITB. KT. FTHE	781		LMD		1140
350		30 1	NENB-DENBAL	FF4FVD1-7FTRIT	B.K)+PB)+CB(TB.	K)		I MO		1150
401		40 1	DENRINE.	NT)=DENA++ 313	111111111111			IMO		1151
	C							LMD		1152
	č							LMD		1153
414	•	1	RETURN					LMD		1154
	C							LMD		1155
	Ċ							LHO		1156
		50 1	FORMAT(215	F10.5.E14.7)				LMO		1157
		60 1	ORMAT (40H					LHD		1158
		1	404				j	LHO		1159
		70 1	FORMATCINS)				LMD		1168
		80 1	FORMATCIOI	5)				LHO		1161
		90 1	FORMAT (BF1	2.5)				LHO		1162
		1901	FORMAT(1H	215,2110.5)				LHO		1163
		110	FORMETCIOI	5)				LHD		1164
		120 1	FORMAT(3F1	P.5)				LMO		1165
		130 1	FORMATIFIE	5,315,F10.5)				LHO		1166
		140.1	FORMAT (1HP.	, 3X, 1HN, 4X, 1HL	. 4X. 4HZETA. 7X. 5	HCOEFF)		LHO		1167
		150 1	FORMATCINO	IS, 16H BASIS	FUNCTIONS, 15H, Z	-COORDINATE	z, F18,5,	LHO		1168
		1	17H	NUCLEAR - CHARG	E #,F5,1)			MOL	1	. 8

	RUN	107	0	SLATE	76/04/89	20,13,03	PARKERZZUR	PAGE N	0. 3
415	c	END						LMO LMO LMO	1170 1171 1172
					· ·		·**		

Listing of SLAFIT and the subroutines that are used only by SLAFIT: DOT, F, LINEQ, LSTSQ, and VECSUM.

.

RUN-10	7 0	76/04/09	20,36,32	PARKERZSPT	PAGE	NQ.	1
	SUBROUTINE SLAFIT				FIT		
C					FIT		
C				a demonstration and and a second second	FIT		
C	USES A LINEAR LE	AST SQUARES METHOD 1	O FIT THE EL	ECTRON DENSITY	FIT		
C	DIRECTLY IN A LI	NFAR COMBINATION OF	SLATER BASIS	FUNCTIONS.	FIT		
C •	GIVES THE NECESS	ARY PUNCHED OUTPUT	FOR LHOLHO.		P 17		
					PIT		
	THELE DATA				PIT		
~	CAPD 4				P 11		
2	TITLE CA I IN CO				5 7 7		
~	CAPD 2	LUNN I FULLHUED BY	HE TITLET		5 7 7		
r	NEE-NUMBER OF FOI	ITOTSTANT PADTAL POT	NTS		5 7 7		
r	RIAST - LAST PANTA	DISTANCE			FTT		
č	CAPD 3	LOISTANCE			FTT		
c	NRTS-NUMBER OF R	ADIAL INTEGRATION SP	GMENTS		FIT		
č	NTT-NUMBER OF TH	FTA INTEGRATION POIN	ITS		FIT		
č	IRELE1 IF A RELA	TIVE LEAST SQUARES	HETHOD IS TO	BE USED	FIT		
c	CARD 4				FIT		
č	NRIJ-NUMBER OF P	DINTS IN EACH RADIAL	SEGMENT		FIT		
C	CARD 5				FIT		
C	RE-ENDING POINTS	FOR THE RADIAL INTE	GRATION		FIT		
C	CARD e				FIT		
C	NNIIC-NUMBER OF N	UCLEI			FIT		
C	NCEN-NUMBER OF B	ASIS SET CENTERS			FIT		1
C	CARD 7		1 A A A A A A A A A A A A A A A A A A A		FIT		
C	ZPOS-BASIS SET C	ENTERS NOT ON THE NU	ICLEI		FIT		
C	CARD A				FIT		
C	NAFR-NUMBER OF B.	ASIS SET FUNCTIONS F	OR EACH CENT	ER	FIT		
Ç	CARD 9000				FIT		
C	LETA-ORBITAL EXPI	DNENT			FIT		
	LZ-POWER OF Z				PIT		
	LESUSPONER OF AN	* 2 + 1 * * 2			P 1 1		
	LREPURER OF R				F 1 1		
~					577		
	DIMENSION WI(96)	WR(100) .NRT.1(20) .RF	(20)		877		
	RISPA	SINT(9A), COST(9A), 7	UC(50) . B(50)		FTT		
¢ .					FTT		
č					FTT		
	COMMON /BLK1/XSO(40	(99)			FIT		
	COMMON /BLK2/Z(4000)			FIT		
	COMMON /BLK3/LZ(50)				FIT		1
	COMMON /BLK4/LXSQ(5	3)			FIT		1
	COMMON /BLK5/LR(50)				FIT		
	COMMON /BLK6/2FTA(5)	6)			FIT		
	COMMON /BLK7/M, NCEN				FIT		4
	COMMON /BLK8/RHO(40	86)			FIT		1
	COMMON /BLK9/NPOINT				FIT		
	COMMON /BLK10/N8FS(5)			FIT		
	COMMON /BLK11/ZPOS(50)			FIT		
C					FIT		
	DATA TOL/1,E-10/				FIT		
C					PIT		

	RU	N=10	7 0	SLAFIT	76/04/09	20.36.32	PARKERZSPT	PAGE	NQ.	2	
	¢			R	EAD IN BASIS SE	T		FIT			57
	C							FIT			58
	C							FIT			59
1			CALL DAT	E(TODAY)				FIT			68
3			CALL TIM	E(TYME)				FIT			61
5			READ(5,3	68)				FIT			62
11			READ(5,2	30) NPE, RLAST				FIT			63
21			READ(5.1	67) NRIS, STI, IREL				FIT			64
33			RFAD(5.1	69) (NPIJ(J). J=1.	HRIST			FIT			65
42			READIS.1	74) (RE(J) . J=1. NR	15)			FIT			66
51			READIS.2	10) NNUC . NCEN	,			FIT			67
61			NPIENNUC	+1				FIT			68
63			TECNPI G	T.NCENIGO TO 10				FIT			69
66			READIS.1	701(7POS(J)	1.NCEN1			FIT			72
75		10	READIS. 2	10) (NBFB(1), 1=1.	NCEN			FTT			71
194			MER					FTT			73
105			DO 28 T-	I.NCEN				ETT			77
113		20	MENANBER	(1)				FTT			71
115		20	MDIENAI	(1)				ETT			46
117			UDITE / L	1001							12
1 3 2			WRITELO	SURITORY				FTT			77
121			WOTTERS					ETT			70
177			WRITELO	2 3 7 3 1 T ME				6 7 7			70
13/			PRIILIDA	1001		•)		F 1 7			14
145			00 30 1=								00
145		**	READISIE	bbjleir(1;,L2(1)	LISE(I), LH(I)			P 1 1			81
164		311	WRITE(6.	200) ZETA(1) . LZ(1),LXSQ(I),LK(I)			PIT			58
	C							FIT			83
	C							FIT			84
	C			5	ET UP THE POINT	S AT WHICH T	HE	PII			85
	Ę			E	LECTRON DENSITY	WILL BE CAL	CULATED	FIT			86
	¢							FIT			87
	C							FIT			88
207		-	NRISO					FIT			89
207			R1E=0.0					FIT			98
210			DO 42 J=	1.NRIS				FIT			91
213			NRIPISNR	1+1				FIT			92
213			NRIENRI+	NRIJ(J)				FIT			93
216			CALL GLE	GEN(NRIJ(J), R(NR	IP1), WR(NRIP1),	RIE.RE(J))		FIT			94
222		40	R1E=RE(J)				FIT			95
226			NR=NRI+1					FIT			96
226			NRIENRI+	NRE				FIT			97
226	•		DELTAR=(RLAST-RE(NRIS))/	FLOAT (NRE)			FIT			98
234			DO 58 J=	NR. NRI				FIT			99
245		50	R(J)=RF(NRIS)+FLOAT(J-NR	+1) +DELTAR			FIT			100
251			CALL GIE	GENINTT. COST. WT.	=1.0.1.3)			FTT			1.01
254			DO AP NT	E1.NTT			×	FTT			103
254		60	STATINTS	SOFTI P-COSTIN	T1+COST (NT1)						102
230		00	STATIATY		11-2081(411)			ETT			100
	-										104
	-					ON DENOTEY		F 11			101
	5				ALCULAIC ELECTR	UN DENSITY C	IF IFE MULECULE	811			100
	5							F 1 1			107
330	C				-						100
270			CALL RHO	MCLICOST, RHO, NNU	LONGIONTI, R.SIN	I, LNUC, ZPDS,	1)	611			109
	ç							P 1 T			110
	C							FIT			111

	RU	N=197	0	SLAFIT	76/24/29	20,36,32	PARKERZSPT	PAGE	NQ.	3
	С				CALCULATE XSG AND	Z		FIT		112
	C							FIT		113
	C							FIT		114
302		1	1=0					FIT		115
303		r	00 78 NT=1	ANTI	\			FIT		116
375		0	0 78 NR=1	.NRI				FIT		117
317		1	[=]+]					FIT		118
317		,	(=P(NP)+ST	NT (NT)				FIT		119
317		7	(1)=9(NR)	+COST(NT)				FIT		120
317		70 1	(SQ(I)=X+X					FIT		121
327			NENRISNTI					FIT		122
327			COUNTER					FIT		123
332		t	0 82 J=1.	NCEN				FIT		124
334		,	KESCI N+1.	J				FIT		125
114			RESNAFRIK	KY				FTT		126
340			0 80 TEL.	NRF				FTT		127
347			THAT COUNT					FTT		128
347			COULT - 100	LINTAS						120
347		85 1	1205/41270	OSCKKS				FTT		112
3-1		04. 4		out any				ETT		131
	č							FTT		112
154	-		DITE	31				FTT		133
143		2	DITELL 20	ALTODAY				5 77		135
390			CITCLOPES	ATTAL				ETT		175
394			INTER CORES					F # 1		133
310			RIIELDIC/	DINRIS, NRI	NDTA			F # 7		130
400			HALIELO, 20		NELJ			P 1 1		131
415			RITE (6,28	MUNII				P 1 1		130
423			RELIE (0,26	e)(Cost(I),1	E1.NII)			P 11		139
	C							F 1 1		140
	C									141
	C				DU A LEAST SUUARE	8 P11		111		142
	C	-						P 11		103
	C							FIT		144
432			CALL LSTSG	(A, C, M, RHO, N	, JREL, DEV, RDEV, TOL	, IER)		FIT		145
	c							FIT		146
	¢							FIT		147
	С				WRITE OUT STANDAR	D DEVIATION	AND	FIT		148
	C				THE RELATIVE DEVI	ATION		FIT		149
	C							FIT		150
	C		the september of the other	and the second				FIT		151
444			RITE(6,29	DEV, RDEV				FIT		152
	C							FIT		153
	C							FIT		154
	C				OUTPUT BASIS IN T	ERMS OF LEG	ENDRE	FIT		155
	C				POLYNOMIALS			FIT		156
	C							FIT		157
	C							FIT		158
454			(#1					FIT		159
455		c	1. Se 00	NCEN				FIT		168
457		1	[H]=]-1					FIT		161
460		1	F(1.GT.1)	KER+NBFB(IM1	3			FIT		162
464		90 2	PCS(I)=ZP	OSCK				FIT		163
471			RITELA. 10	(0)				FIT		164
474			RITELS	VADDAY				FIT		145

	RUN=1	07	0	SLAFIT	76/04/09	20.36.32	PARKERZSPT	PAGE	NO.	4
518		WRI	TE (7.30	(0)				FTT		167
514		WRI	TF(7.16	DINNUE NEEN				FTT		168
524		WPT	TELANTA	A) NNUC . NCEN				FTT		169
514		. PT	1617.17	0) (7NUC (1) . 1=1	NNUCA			FIT		178
543		ART	TE (6. 17	0) (ZNUC(T) . 1=1.	NNUCT			FIT		171
552		WRI	TF(7.17	P) (ZPOS(1), I=1.	NCENT			FIT		172
561		NRI	TE(o.17	0) (ZPOS(I) . I=1	NCENI			FIT		173
	с .							FIT		174
	C							FIT		175
578		WRI	TE(5.22	(8)				FIT		176
574		DO	130 1=1	. M				FIT		177
576		IFC	LXSO(I)	.GT. 9) GO TO 10	3			FIT		178
691		IFC	L7(1).0	T.1)GO TO 110				FIT		179
684		NEL	R(I)+1					FIT		180
694		IFC	LZ(I).E	Q.1)N=N+1				FIT		181
618		L=L	2(1)					FIT		182
610		COE	FF=C(1)					FIT		183
618		ZET	=ZETACI)				FIT		184
615		WRI	TE (6. 14	R)N,L.ZET,COEFI	5			FIT		185
630		WRI	TE(7.14	B)N, L. ZET, COEFI	7			FIT		186
644		GO	051 OT					FIT		187
646	102	N=3						FIT		188
646		L=0		*				FIT		169
646		COL	FF=2. 24	C(I)/3.0				FIT		198
646		ZET	=ZETA())				FIT		191
654		WRI	TE(6,14	(P) N. L. ZET. COEFI				FIT		192
670		WRI	TE(7,14	B) N. L. ZET. COEFI	F			FIT		193
795		N=3						FIT		194
795		1=5						FIT		195
705		COE	FF==2.0	+C(I)/3.0				FIT		196
795		ZET	=ZETA(I)				FIT		197
714		WRI	TE(6,14	Ø) N. L. ZET. COEF	F			FIT		198
727		WRI	TE(7.14	B)N, L.ZET. COEFI	F			FIT		199
743		GO	10 150					FIT		200
745	110	N=3						FIT		201
745		L=6						FIT		202
745		COE	FF=C(1)	13.0				FIT		203
745		ZET	=7ETACI)				FIT		284
753		WRI	TE(6,14	DIN, L, ZET, COEF				FIT		285
766		WRI	TE(7,14	B)N,L,ZET,COEFI				FIT		286
1003		N=3						FIT		207
1003		L=2						FIT		268
1603		COF	FEZ.PA	C(1)/5.0				911		564
1993		ZET	=ZETACI)				FIT		210
1615		WRI	TE(6,14	UN, L. ZET, CUEPI				P 1 1		211
1025		WRI	16(7,14	B)N.L.ZET.CUEFI				P11		212
1041	120	CON	TINUE					P 11		213
1641	150	CON	INUE					P 1 1		219
	140	FUR	MATCELS	5 775 FIG EL				P 11		213
1000	120	PUR	-AI(F12	1 31 31 34 10 31				F 1 1		210
1044	110	FEL	VRN	E1				- T1		217
	100	PUR	-AT(161	5/				P 1 T		218
	170	FOR		BUCOWED OF ANY			1483	F 1 1		219
	100	FUR	-ai (lux	S THE ELA EL		346 30 20 20 20 20 20	1-47	577		224
	IAN	L Oh.	NATERIE	* 31 31 31 71 1 10 31				6 1 1		221

RUN=107	0	SLAFIT	76/84/89	28.36.35	PARKERZSPT	PAGE	ND.	5
288 FOR	HAT(F19	,5,315)				FIT		222
218 FOR	MATC16I	5)				FIT		223
228 FOR	MATCINE	. 3x. 1HN. 4X. 1HL.	4X, 4HZFTA, 7X, 5	HCOEFFS		FIT		224
230 FOR	MAT(15.	F10.5)				FIT		225
240 100	MATCIN	. BUX, SHDATE . AS	0).			FIT		226
250 FOR	MATCIN	. 6PX. SHTIME . AT	3)			FIT		227
26P FOR	MAT(SF1	2.5)				FIT		228
278 FOR	MATCHA	, SHNR13=, 15, 10)	(,4HNR1=,15)			FIT		229
280 FOR	MATCINE	, UHNT 1=, 15)				FIT		238
293 FOR	HATCING	. 19HSTANDARD DE	VIATION=, E14.7	1		FIT		231
1	140	, 28HPELATIVE ST	ANDARD DEVIATI	ON# . E14.7)		FIT		232
300 FOF	MATCHOH					FIT		233
1	401				3	FIT		234
END						FIT		235

	RUN-1	ð7 0		76/84/89		28.	36.32	PARKERZSPT	PAGE	NO.	1
		DOUBLE	PRECISION FUNC	TION DOT(A.B)					FIT		49
	C FC	RAS THE	DOT PRODUCT OF	VECTORS & AND B					FIT		50
	C TH	E LENGT	H OF THE VECTOR	S 15 TRANSMITTED	HY	THE	COMMON	STATEMENT	FIT		58
6		DIMENS	ION 4(1),8(1)						FIT		50
6		COMMON	/VECTOR/ LIMIT	FACTOR					FIT		50
6		DOT=2.	000	- Charles and the second se					FIT		50
6		ITOP .	LIMIT + 1						FIT		50
12		IF(ITO	P.LT.1)110P#1						FIT		58
15		00 12	I=1.ITOP						FIT		50
22	10	DOT :	DOT + A(1)+B(1)						FIT		50
33		RETURN							FIT		50
35		END							FIT		51

	RUN-107 0	76/84/89	28.36.32	PARKERZSPT	PAGE	NO.	1
	FUNCTION F(1.J)				FIT		
6	COMMON /BLK1/XSG(4002)				FIT		488
6	COMMON /BLK2/7(4200)				FIT		481
6	COMMON /81 K3/17(58)				FTT		482
6	COMMON /BLK4/LXSC(50)				FIT		483
6	COMMON /BLK5/LR(50)				FIT		484
6	COMMON /BLK6/C(50)				FIT		485
6	COMMON /HLK7/M. NNUC				FIT		486
6	COMMON /BLK10/N1(5)				FIT		481
	COMMON /BLK11/7N(5)				FIT		488
7	7(=2(3)=2%(1)				FIT		489
7	XS=XSQ(J)				FIT		498
13	RESPRICTC+7C+XS)				FIT		491
16	FE1.0				FIT		492
20	IF(LZ(1),GT,0)F=ZC++LZ()	1)			FIT		493
27	IF(LYSQ(I).GT.C)F=F+x5+	LXSG(1)			FIT		494
36	IF(LH(1),GT.0)F=F+P++LR(FIT		495
45	F=F+FXP(+C(I)+R)				FIT		496
53	RETURN				FIT		497
53	END				FIT		498

	RU	N-107	0				76/84/09	20.36.32	PARKER23PT	PAGE	NO.	1	
		SU	BROUTIN	E LINE	3(R.C.	N. M. T	L. TER)			FIT		21	
	C	SOLVE	S STMUL	TANFOUS	LINFA	E FOU	TTONS BY N	INFRICALLY S	TARLE UNTTARY	FTT		21	ï
	c	TRIA	NGULARI	ZATION.				and the service of th	CAUEL UNATAN	FIT		21	ŝ
	c	THIS	VERSTON	FOR RE	AL FOU	ATTON				FTT		21	
	č	C T	S THE N	BYNC	DEFETC	TENT I	ATRIX			FIT		20	11
	c	RIS	THE MA	TRIX OF	RIGHT	HAND	SIDES. WIT	N ROWS AND	M COLUMNS.	FIT		24	
	C	ON RE	TURN. R	CONTAL	NS THE	SOLU	TIDNS X.	XER		FIT		24	1
	C	THE	ELEMENT	SOFC	SHOULD	BE SI	CALLO IN EA	H ROW SO TH	AT	FIT		20	1
	C	THE	HAXIMUM	ELEMEN	T IN E	ACH R	TH IS ABOUT	UNITY		FIT		24	1
	C	EACH	FC+ OF	THE RI	GHT HA	ND SI	DES SHOULD	AE MULTIPLIE	D BY THE	FIT		20	; 1
	C	THE	SAME FA	COTR AS	THE C	ORPESI	CNDING ROW	OF THE COEF	FICIENTS	FIT		24	1
	C	TOL	IS A TO	LERANCE	. ELEM	ENTS I	ESS THAN T	L IN MAGNIT	UDE HAY BE	FIT		24	
	C	NEGLE	CTED SO	METIMES						FIT		20	11
	C	IER I	S AN ER	ROR PAR	AMETER	. 0N	RETURN, IF	IERSO, NO E	PROR.	F17		24	1
	C		IF IER	= -1. 1	O RESU	LT BEI	AUSE M OP	IS NOT POS	ITIVE	FIT		25	51
	С		IF IER	= K, WI	RNING.	POSS	BLE LOSS D	SIGNIFICAN	CE IN THE	FIT		29	5 1
	C	1	K-TH CO	MPONENT	S OF 1	HE SOL	UTIONS. E	RORS LARGER	THAN TOL	FIT		25	5
	C		MAY HAV	E BFEN	INTROD	UCED.				FIT		25	5
16		DI	FNSION	C(1),	R(1)					FIT		25	54
16		DOG	UALE PR	ECISION	DOT, S	SQ, SM	G, DIAG, S, S	ALE		FIT		25	5
16		CO	MON IN	ECTOR/L	IMIT,F	ACTOR				FIT		25	51
16		IF	(M.LT.1) GO TO	10					FIT		25	5
32		IE	R = 17					12		FIT		25	51
	C	SET T	OLERANC	E FOR F	OSSIBL	E LOS	S OF SOME A	CURACY IN R	ESULTS	FJT		25	5
	C	THE	SINGLE	PRECISI	ON ROU	NDOFF	ERRCR FOR	THE IBM 360	IS ABOUT 5.E.7	FIT		26	1
59		DT	DL = 5.	E=14/(1	OL+FLO	AT(N))			FIT		26	1
22		NS	G = NAN							FIT		26	
26		NM	1 = N .	1						FIT		26	5
22		NM	1 = N#	(M-1)						FIT		26	
20		NP	1 = N +	1						FIT		26	5
28		NM	= N+M							FIT		26	51
32		IF	(NH1)10	,98,20						FIT		26	5
34		10 IE	R = -1	1. 1						FIT		26	
35		RE	TURN							FIT		26	,
	C	NELEM	POINTS	TO THE	TOP D	F THE	COLUMN IN	THE COEFFICI	ENT HATRIX	FIT		27	1
	C	WHOSE	SUPER-	DIAGONA	L ELEM	ENTS	RE BEING E	IMINATED BY	THIS TRANS-	FIT		21	1
	C	FORMA	TION.							FIT		21	1
36		20 NE	LEM = N	SG . NI	11					FIT		21	11
36		NS	HIFT =	NSQ - M	1					FIT		21	11
	C	THIS	LOOP IS	OVER 1	HE COL	UMNS (OF THE COEF	FICIENT MATR	IX C	FIT		21	1
41		DO	80 I=1	, NM1						FIT		51	11
43		NS	HIFT =	NSHIFT	• N					FIT		27	1
43		LI	MHI = N	ELEM +	NM1 -	I				FIT		21	11
	С	THIS	LOOP SE	ARCHES	FOR TH	E FIRS	ST SIGNIFIC.	NT ELEMENT	TO BE REMOVED	FIT		27	1
47		DD	30 J=N	ELEMOLI	MHI					FIT		28	51
50		1F	(ABS(CC	J)).LE.	TOLI G	0 TO :	88	where the second second second	and a serie production of the second	FIT		56	1
	C	THIS	IS REAC	HED FOR	THE F	IRST S	BIGNIFICANT	ELEMENT TO	BE ELIMINATED	FIT		58	1
54		NS	TAPT =	J						FIT		28	1
55		GO	TO 42							FIT		58	1
56		36.00	NTINUE							FIT		58	1
	C	THIS	IS REAC	HED ONL	Y IF A	LL SUP	ER-DIAGONA	. ELEMENTS I	N THIS COLUMN	FIT		55	
	С	ARE A	LPEADY	NEGLICI	BLE.					FIT		28	\$ 1
61		GO	TC BO							FIT		28	1
	C	FORM	THE NOR	MALIZAT	ION FO	H THE	UNITARY TR	ANGULARIZAT	ION	FIT		58	1
51		40 11	MHI = L	INHI +	1					FIT		54	1

	R	UN=107	C	LINED	76/04/09	20,36,32	PARKERZSPT	PAGE	NO. 2
61		13	MIT	= LIMHI - NSTAR	11			FIT	291
64		55	39 =	DOT(C(NSTAPT),C	(NSTART))			FIT	292
77		5	446 =	DSCRT(SSQ)				FIT	293
101		DI	AG =	C(LIMHI)				FIT	294
	С	FIX /	PHA	SE FOR S, WHICH	WILL GUARANTEE N	DN-VANISHING	DENGMINATOR,	FIT	295
110		5	=DSI	GN(SMAG, DIAG)	·			FIT	296
117		50	ALE	= -1.200/(SSO+D	IAG*S)			FIT	297
117		CI	LIMM	I) = S + DIAG				FIT	298
	C	TRANS	FCRM	THE RIGHT HAND	SIDES R BY MULTI	PLYING ON THE	LEFT	FIT	299
	C	BY TH	IF UN	TTARY MATRIX 1	- 2W WH			FIT	308
154		SO NE		START - NELEM +	+ 1			FIT	381
154		NL	AST	= NR + NMM1				FIT	302
160		DC	5 6 2	JENR, NLAST, N				FIT	303
162		FI	CTOR	= SCALE+DOTICE	(NSTART),R(J))			FIT	304
202		6P. CI	LL V	ECSUM(R(J),C(NS	START))			FIT	305
	С	TRAP	ISFOS	M THE COEFFICIE	INT MATRIX			717	306
217		NI	AST	= NR + NSHIFT				FIT	367
551		DC	1 70	J=NF, NLAST, N				FIT	308
525		F	CTOR	= SCALE + DOT(CC	(NSTART), C(J))			FIT	309
242		70 C/	ILL V	ECSUM(C(J),C(NS	START))			FIT	318
	C	FIXI	ID DI	AGONAL ELEMENT				FIT	311
257		CI	LIMH	(I) = =8				FIT	312
	c	FIND	NEW	PRINTER TO ELEM	MENT AT TOP OF COL	UMN		FIT	313
265		88 NE	LEM	S NELEM - N				FIT	314
	С	SOLVE	THE	TRANSFORMED LI	INEAR EQUATIONS WI	TH LOWER TRIA	NGULAR	FIT	315
-	C	COFFE	JCIE	NT MATRIX C.				FIT	316
592		90 LC	:01=	NMI				FIT	317
265		N	IAG	= 1				FIT	318
690	-	NE	CUL	IN SUFERING				PIT	319
277	¢	1412		IS OVER THE S	COWS OF COMPONENTS			P 1 1	328
e.12		ETNO	1 220	1 1 1 1 N				F 1 1	321
291	L	F140	ACT	LARGEST FLEPENT	I IN THIS ROW OF I	AC RIGHT HAND	SIDES	F 1 1	320
273		- 14	LDI					F 1 1	323
275			14459	7 - 7 - NI A - 7 - M				5.11	324
277		D	AAC-A	DEIDEIN				ETT	323
3/35		10	/ DWA	CT DHAYS DHAY	PHAC			ETT	320
105		100 00	NTTN	USE CIERTS				FTT	128
	r	SET	DIFE	ANCE FOR LOSS D	F ACCURACY			FTT	120
312	-	RI	01 =0	TOL AMINI (RMAX.	1.0)			FIT	330
	C	TEST	FOR	SINGULAR MATRI	X			FTT	331
310		TF	ST =	ABS(C(NDIAG))	-			FTT	332
316		TF	TFS	T. GT. P. P1 60 TO	1 1 3 8			FTT	111
	C	THIS	15 8	FACHED IF THE C	DEFFICIENT MATRIX	IS SINGULAR.		FIT	334
321	-	110 WS	TTE	6.120)				FIT	115
		128 10	RMAT	LISH SINGULAR H	ATRIX 3			FIT	336
331		DI	NV =	1.0E+07				FIT	337
331		IF	RE	I				FIT	338
333		GC	TO	160				FIT	339
334		130 IF	ITES	T.GT.RTOLISO TO	150			FIT	348
340		* *	TTE	6,149)1				FIT	341
		146 FC	RMAT	(43H MARNING, P	OSSIBLE LOSS OF S	IGNIFICANCE I	· . I4.	FIT	342
		1	354	TH COMPONENTS	OF THE SOLUTIONS.)		FIT	343
351		IE	P =	1				FIT	344
	C	INVER	T TH	F DIAGONAL FLEM	FNT			FIT	345

	RL	JN=187	0	LINEQ	76/04/09	28,36,32	PARKERZSPT	PAGE	ND.	3
352		150 DIN	V = 1.	ALC (NDIAG)				FIT		346
	C	FIND T	HE LAS	T SIGNIFICANT E	LEMENT IN THIS	COLUMN OF THE	COFFFICIENT	FIT		347
	C	MATRIX	¢.					FIT		345
355	-	16P NR	I NACO					FIT		344
355		NLC	01 #1 00					FIT		350
357		IFC	LCOL.L	E. PINLCOL=1				FIT		351
362		00	173 J=	I, NLCOL				FIT		352
364		IFC	ARSICI	RT).LE.TOL) GO	TO 170			FIT		351
	С	THIS I	S REAC	HED FOR THE LAS	T SIGNIFICANT	LEMENT IN THI	S COLUMN	FIT		354
370		LIM	IT = L	COL = J				FIT		355
372		GO	10 180					FIT		356
372		172 NR	= NR .	1				FIT		357
	С	THIS I	S REAC	HED ONLY IF THE	RE ARE NO SIGN	FICANT SUBDIA	GONAL ELEMENTS	FIT		358
376		LIM	17 = -	1				FIT		359
	C							FIT		368
	C	THIS L	002 15	OVER THE COLUM	INS OF THE SOLU	ION		FIT		361
377		180 NLA	ST = I	+ NMM1				FIT		362
401		00	212 3=	I, NLAST, N				FIT		363
	С	SOLVE	FOR A	COMPONENT				FIT		364
492		R(J) = P(J) # DINV				FIT		365
	С	ELIMIN	ATE TH	IS COMPONENT FR	OM THE REMAININ	NG EQUATIONS.		FIT		366
404		TFC	LIMIT).	216,190,230				FIT		367
416		198 R(J	+1) =	R(J+1) - R(J)+((NDIAG+1)			FIT		368
413		50	10 218					FIT		369
414		200 FAC	TOR E	-R(J)				FIT		378
416		CAL	L VECS	UM(R(J+1),C(ND)	AG+1))			FIT		371
431		210 CON	TINUE					FIT		372
230		NDT	AC = N	DIAG + NP1				FIT		373
434		NBC	OL = N	BCOL + N				FIT		374
036		556 TC0	L = LC	DL • 1				FIT		375
	C	SOLUT1	ON NOW	COMPLETE				FIT		376
442		RET	URN					FIT		377
443		END						FIT		378
	RUN-1	37 0		76/84/89	20, 36, 32	PARKERZSPT	PAGE	ND. 1		
-----	-------	-------------	-------------------	-------------------	--------------	------------	-------	-------	-----	
		SUBROUTINE	LSTSG(A, B, M, Y	N, IREL, DEV, RDE	V, TOL, IER)		FIT		370	
	C						FIT		386	
	C						FIT		381	
	C	PURPOSE					FIT		382	
	C	A LINEA	P LEAST SQUARE	S SUBROUTINE,			FIT		383	
	C	DESCRIPTIO	IN OF PARAMETER	3			F 2 1		304	
	C	A MATRI	A TO SET UP IN	E LEAST SUUARES	EGUATIONS	DN D	577		303	
	P	CONTA	TING THE LEAD	P PREET PTENTS	TONS ON ACTO		877		101	
	ř	MANUMRE	P OF BASTS FUN	CTTONS			8 77		101	
	č	V-APPAY	CONTAINING TH	F FUNCTIONAL VA	LUES TO BE F	IT.	FIT		380	
	č	N-NIIMBE	R OF POINTS TO	BE FIT.			FIT		190	
	č	IREL=1	IF THE LEAST S	QUARES METHOD W	ILL BE PREFO	RMED WITH	FIT		391	
	5		RELATIVE WEIGH	TING			FIT		392	
	C	DEV-RES	ULTANT STANDAR	D DEVIATION			FIT		393	
	C	RDEV=RE	SULTANT RELATS	VE STANDARD DEV	IATION		FIT		394	
	С	TOL-THE	DESIRED ACCUR	ACY WANTED,			FIT		395	
	5	IER-RES	ULTANT EPROR P	ARAMETER FOR A	DESCRIPTION	SEE LINEG.	FIT		396	
	ç	FUNCTION 4	ND SUBROUTINE	REQUIRED			FIT		397	
	C C	FUNCTIO	N F(I,J) WHICH	CUNTAINS THE I	-IM FUNCTION	AT THE	P 11		390	
	2	1 71 60	2414	PUINTE			ETT		400	
	č	LINEG					FTT		481	
	č						FIT		482	
22		DIMENSION	A(M, M), B(1), Y(1)			FIT		403	
	C						FIT		484	
22		LOGICAL TE	ST				FIT		485	
	С						FIT		466	
22		TESTIREL.	EQ.1				FIT		421	
	C						FIT		488	
	C						FIT		404	
	C .		1	NITIALIZE A ANU	B TU ZEU.		P 11		438	
	5						F 7 7		411	
25			8				FIT		413	
27		B(1)=0.0					FIT		414	
30		DO 18 K#1.	M				FIT		415	
37	10	A(K,I)=R.P.	3				FIT		416	
	C						FIT		411	
	5						FIT		418	
	.C		F	ORM THE LEAST S	DUARES SYSTE	MS OF	FIT		419	
	C		Ł	QUATIONS			FIT		428	
	C						P 1 1		421	
. 7	L		N				511		420	
50		VIEV(1)					FTT		424	
51		TE(TEST) OD	VJal BIYJ				FIT		421	
55		IF (TEST)YJ	171.0				FIT		420	
611		DO 23 1=1.	M				FIT		421	
52		FIJ=F(J,J)					FIT		428	
64		JF (TEST)FI	J=FIJ*0DVJ				FIT		424	
73		9(I)=B(I)+	FIJ=YJ				FIT		436	
77		DD 28 K=1.	I				FIT		431	
69		FKJ=F(K,J)	I-FU HARRY				FIT		450	
20		IP (IPST)FR	JEFKJEDUTJ				F 1 1			

	RUN	-19	7	D	LSTSQ	76	104109	28,36,32	PARKERZJPT	PAGE	ND. 2
111			ACK,	I)=A((K, 1)+FKJ+F1.	J				FIT	43/
117		20	ALLA	K)=A((K.1)					FIT	435
	С									FIT	436
	C									FIT	437
	C					MAKE, THE	MAXIMUM	OF EACH ROW	EQUAL TO	FIT	431
	C					UNITY IN	ASSOLUT	E VALUE.		FIT	430
	C									FIT	446
	C									FIT	44
133			00 4	8 1=1	L.M					FIT	447
134			AMAX	5.64						FIT	447
135			DO 3	2 J=1	1, M					FIT	946
143		30	AMAX	SAMAS	CICAMAX, ABSC.	A(I,J)))				FIT	40
151			8(1)	18(I)	XAMAX .					FIT	446
157			D0 4	Ø J=1	1. M					FIT	441
167		40	ACI.	J)=A(I.J./AMAX					FIT	441
	C									FIT	445
	C									FIT	450
	C					SOLVE TH	E LINEAR	SYSTEM OF E	QUATIONS	FIT	451
	С									FIT	457
	C									FIT	453
177			CALL.	LINE	EQ (B, A, M, 1, T)	DL. IER)				FIT	450
	С									FIT	45
	C									FIT	456
	C					CALCULAT	E THE ST	ANDARD DEVIA	TION AND	FIT	457
	C					THE RELA	TIVE DEV	ATION		FIT	458
	C									FIT	459
	C									FIT	469
203			DEV=	8.0						FIT	461
203			RDEV	=8.8						FIT	467
205			DO 6	A JES	1, N					FIT	463
212			YJ=Y	(1)						FIT	464
212			ODYJ	59=1.	B/(YJ+YJ)					FIT	46
212			SUM=	0.0						FIT	466
216			00 5	8 I=1	L, M					FIT	467
550		50	SUME	SUM+E	3(I)*F(I,J)					FIT	468
533			DIFS	2=(SL	JH=YJ)**2					FIT	464
233			DEVE	DEV+C	DIFSC					FIT	476
237		68	RDEV	RDEN	+DIFSC+ODYJ	50				FIT	471
244			DDXN	=1.0/	FLOAT(N=1)					FIT	477
246			DEV=	SORT	(DEV+ODXN)					FIT	471
252			RDEV	=SQR1	(RDEV+ODXN)					FIT	474
	C									FIT	475
	C									FIT,	476
260			RETU	RN						FIT	477
261			END							FIT	478

	RUN-1	07	0				7	6194	189	28.3	56.32	PARKERZ3PT	PAGE	NO.	1
		SUBR	OUTINE	VECSI	U" (A. B)	1							FIT		511
	C AD	DS FA	CTOR+8	TO A	HHER!	A AND) B	ARE	VECT	ORS OF	LENGTH	LIMIT + 1	FIT		512
6		COMM	ON IVE	CTOR/	LIMIT	FACTOR	2						FIT		513
6		DIME	SION	A(1),8	6(1)								FIT		514
6		ITOP	S LIM	11 + 1	1								FIT		515
7		IFII	TOP.LT	.1)110	OP=1								FIT		516
52		00 1	3 1=1.	ITOP									FIT		517
17	10	A(I)	I ALI) + F.	ACTORES	3(1)							FIT		518
2.2		SETL	RN										FIT		519
23		END											FIT		520

Listing of subroutines that are used by both LMOLMO and SLAFIT; GLEGEN, RHOMOL, PLM, and REP.

N=11	37 0			761	64/89	20,13.03	PARKERZZUR	PAGE	NG.	1	
	SUBROUTIN	E GLEG	EN(NPT. XPT.	-	B)			MOL			9
					C1131			MCL			
								MOL			
	PURPOSE							MOL			
	SUPPL T	ES THE	GAUSS LEGE	NORF 7	FROS AND	WEIGHTS		MOL			
								MOL			
	DESCRIPTI	CN OF	PARAMETERS					MOL			
	NPT-TH	F WIIM	APP OF POTS	TS DES	THED			MOL			
	XPT-PF	SHI TAN	T LODLY COL	TATNEN	C THE GA	USS LEGENDA	F 7FROS	MOL			
	HHT-PF	SHI TAN	T AREAY CON	YAYNTN	G THE GA	USS LEGENDA	F WETGHTS	MOL			
	ALLOWE	DIIMT	T DE THE TH	TECRAT	TON	DIG LEGENDA	C HERONIO	MOL			
	H-THE	HPPFP	I THIT OF TH	F INTE	GRATION			MOL			
	C. THE	01.114	Carrie of the		0			MOL			
	SHARAUTTA	ES AND	FUNCTION S	URPORC	BANS DEC	ITPED		MOL			
	NONE		roaction c	001400	AND NEU	USALU	6	MOL			
	HONE							MOL			
	NETHOR							HOL			
					ETED DY	-	P	HOL			
	WRITTE	N BY S	HELDON GHEE	N MUUI	ALCU ATE	D ON PHE TO	K 7070	HOL			
	ALL ZE	HUS AN	S NEIGHIS P	FCTETO	N / 178 B	TTES	14 1636	HOL			
	SIREIC	H USIN	C DUJULE PF	ECISIO	n lize c	113)		HOL			
								NOL			
								MOL			
	DIMENSION	XP1(1), ##1(1)					FUL			
	DIMENSION	X1114	4), A[1144]					MOL			
	DIMENSION	X2(1)	##2(1)					MOL			
	DIMENSION	X3(S)	,#5(2)					MOL			
	DIMENSION	X4(3)	. 4(2)					MOL			
	DIMENTICY	\$3(3)	, 85(3)					HOL			
	CIMENSION	¥6(3)	, W6(3)					MOL			
	DIMERSION	\$7(4)	. w7(3)					MOL			
	DIMENSION	X8(4)	, #8(4)					MOL			
	DIMENSION	¥9(5)	, \$9(5)					MOL			
	DIHERSION	x12(5),W10(5)					MOL			
	DIMENSION	X11(6), W11(6)					HOL			
	DIMENSION	×1216),W12(6)					MOL			
	DIMENSION	\$13(7), #13(7)					MOL			
	DIMENSION	X14(7), W14(7)					MOL			
	DIMENSION	X15(8), #15(8)					MOL			
	DIMENSION	X16(A). #16(8)					HOL			
	DIMENSTON	×17(9	1,W17(9)					MOL			
	DIMENSION	X18(9),W18(9)					MOL			
	CIMENSION	x19(1	B), W19(10)					MOL			
	DIMENSION	X56(1	0), W20(10)					HOL			
	DIMENSION	x51(1	1), 121(11)					MOL			
	DIMENSION	11221	(11)5584.(1					HOL			
	DIMENSION	X23(1	2:, N23(12)					MOL			
	DIMENSION	X24(1	(21)+54(12)					MOL			
	DIMENSION	125(1	3), #25(13)					HOL			
	DIMENSION	¥20(:	3), *26(13)					MOL			
	DIMENSION	X27(1	47, #27(14)					MOL			
	DIMENSTON	11.95%	4), #28(14)					MOL			
	DINENSION	X29(1	5), W29(15)					MOL			
	DIMENSTON	X30(1	5), +30(15)					MOL			
	DIHENSTON	X3111	61, #31(16)					HOL			
								MOL			

14 D1HF WS IDN X33(17), W33(17) HOL 14 D1HF WS IDN X33(17), W33(17) HOL 14 D1HF WS IDN X33(17), W33(17) HOL 14 D1HF WS IDN X33(11), W33(17) HOL 14 D1HF WS IDN X33(12), W33(20) HOL 14 D1HF WS IDN X30(21), W43(20) HOL 14 D1HF WS IDN X40(22), W43(22) MOL 14 D1HF WS IDN X40(22), W42(22) MOL 14 D1HF WS IDN X40(22), W42(23) MOL 14 D1HF WS IDN X40(23), W42(23) MOL 14 D1HF WS IDN X40(23), W42(23) MOL 14 <	2
14 DJPEPSIDN X36(17),H34(17) MOL 14 DJPENSIDN X35(18),H35(18) MOL 14 DJPENSIDN X35(19),H37(19) MOL 14 DJPENSIDN X35(19),H37(19) MOL 14 DJPENSIDN X35(19),H37(19) MOL 14 DJPENSIDN X35(19),H37(19) MOL 14 DJPENSIDN X35(27),H37(28) MOL 14 DJPENSIDN X42(21),H42(21) MOL 14 DJPENSIDN X42(21),H42(22) MOL 14 DJPENSIDN X42(22),H42(22) MOL 14 DJPENSIDN X42(23),H42(22) MOL 14 DJPENSIDN X42(23),H42(23) MOL 14 DJPENSIDN X42(24),H42(24) MOL 14 DJPENSIDN X46(23),H43(23) MOL 14 DJPENSIDN X46(24),H42(24) MOL 14 DJPENSIDN X46(24),H43(24) MOL 14 DJPENSIDN X45(27),H52(26) MOL <td>66</td>	66
14 0]F(ENSION X35(16),W35(18) MOL 14 0]F(ENSION X35(16),W35(18) MOL 14 0]F(ENSION X35(16),W35(19) MOL 14 0]F(ENSION X35(16),W35(19) MOL 14 0]F(ENSION X35(17),W35(28) MOL 14 0]F(ENSION X36(27),W36(28) MOL 14 0]F(ENSION X46(27),W46(28) MOL 14 0]F(ENSION X46(27),W47(28) MOL 14 0]F(ENSION X46(27),W47(28) MOL 14 0]F(ENSION X46(27),W53(27) MOL 14 0]F(ENSION X56(28),W55(28)	67
14 CIMENSION X35(19), M35(18) MOL 14 DIMENSION X35(19), M35(19) MOL 14 DIMENSION X35(19), M35(19) MOL 14 DIMENSION X35(29), M35(28) MOL 14 DIMENSION X45(27), M41(20) MOL 14 DIMENSION X45(27), M41(20) MOL 14 DIMENSION X45(27), M41(20) MOL 14 DIMENSION X45(27), M43(22) MOL 14 DIMENSION X45(23), M45(23) MOL 14 DIMENSION X46(23), M45(23) MOL 14 DIMENSION X46(24), M47(24) MOL 14 DIMENSION X46(23), M45(25) MOL 14 DIMENSION X46(25), M46(25) MOL 14 DIMENSION X5(27), %52(27) MOL 14 DIMENSION X5(27), %52(27) MOL 14 DIMENSION X5(27), %52(28) MOL 14 DIMENSION X55(26), %51(26) <t< td=""><td>68</td></t<>	68
14 DIMENSION X37(19), X37(19), X37(19) MOL 14 DIMENSION X37(27), X37(28) MOL 14 DIMENSION X47(21), 442(21) MOL 14 DIMENSION X47(21), 442(22) MOL 14 DIMENSION X47(23), 443(22) MOL 14 DIMENSION X47(23), 443(23) MOL 14 DIMENSION X47(23), 443(23) MOL 14 DIMENSION X47(23), 443(24) MOL 14 DIMENSION X47(25), 56(25) MOL 14 DIMENSION X47(25), 56(25) MOL 14 DIMENSION X56(26), 55(26) MOL 14 DIMENSION X56(26), 56(28)	69
14 DIMENSION X8(19),X8(19),X8(19),X8(19) MOL 14 DIMENSION X8(19),X8(19),X8(20) MOL 14 DIMENSION X8(21),W8(20) MOL 14 DIMENSION X8(21),W8(20) MOL 14 DIMENSION X8(21),W8(20) MOL 14 DIMENSION X8(22),W8(20) MOL 14 DIMENSION X8(20),W8(20) MOL 14 DIMENSION X8(20),W8(20) MOL 14 DIMENSION X8(20),W8(20) MOL 14 DIMENSION X5(20),W8(20) MOL 14 DIMENSION X5(20),W8(20) MOL 14 DIMENSION X5(20),W8(20) MOL 14 DIMENSION X5(20),W8(30) MOL 14 DIMENSION X5(20),W8(30) MOL 14 DIMENSION X6(30),W8(30) MOL	70
14 01MENS[10] X30(20), X30(20), X40(20) MOL 14 01MENS[10] X20(20), W40(20) MOL 14 01MENS[10] X20(20), X40(27) MOL 14 01MENS[10] X20(20), X40(20) MOL 14 01MENS[1	71
14 01# NS 10N X# (20), #44 (20) MOL 14 01# NS 10N X# (21), #44 (21) MOL 14 01# NS 10N X# (21), #44 (21) MOL 14 01# NS 10N X# (22), #44 (22) MOL 14 01# NS 10N X# (22), #44 (22) MOL 14 01# NS 10N X# (22), #44 (22) MOL 14 01# NS 10N X# (22), #44 (22) MOL 14 01# NS 10N X# (22), #44 (22) MOL 14 01# NS 10N X# (22), #44 (22) MOL 14 01# NS 10N X# (24), #44 (24) MOL 14 01# NS 10N X# (24), #44 (24) MOL 14 01# NS 10N X# (24), #44 (24) MOL 14 01# NS 10N X# (24), #44 (24) MOL 14 01# NS 10N X# (24), #44 (24) MOL 14 01# NS 10N X# (24), #44 (24) MOL 14 01# NS 10N X# (25) MOL 14 01# NS 10N X# (24), #44 (24) MOL 14 01# NS 10N X# (25), #53 (25) MOL 14 01# NS 10N X# (26), #53 (26) MOL 14 01# NS 10N X# (26), #54 (26) MOL 14 01# NS	72
14 D144 b1(k) k+1(21) k+4(21) MDL 14 D144 b2(k) k+1(21) k+4(21) MDL 14 D144 b2(k) k+1(21) k+4(22) MDL 14 D144 b2(k) k+4(22) k+4(22) MDL 14 D144 b2(k) k+4(22) k+4(22) MDL 14 D144 b2(k) k+4(23) k+4(22) MDL 14 D144 b2(k) k+4(23) k+4(23) MDL 14 D144 b2(k) k+4(24) k+4(23) MDL 14 D144 b2(k) k+4(24) k+4(24) MDL 14 D144 b2(k) k+4(24) k+4(24) MDL 14 D144 b2(k) k+5(24) k+4(25) MDL 14 D144 b2(k) k+5(24) k+4(25) MDL 14 D144 b2(k) k+5(24) k+5(26) MDL 14 D144 b2(k) k+5(24) k+5(26) MDL 14 D144 b2(k) k+5(24) k+5(28) MDL 14 D144 b2(k) k+5(26) k+5(28)<	75
14 D1M + NS 10V XA (21) + VA (22) MDL 14 D1M + NS 10V XA (22) + VA (22) MDL 14 D1M + NS 10V XA (22) + VA (22) MDL 14 D1M + NS 10V XA (22) + VA (22) MDL 14 D1M + NS 10V XA (22) + VA (22) MDL 14 D1M + NS 10V XA (24) + VA (24) MDL 14 D1M + NS 10V XA (24) + VA (24) MDL 14 D1M + NS 10V XA (24) + VA (24) MDL 14 D1M + NS 10V XA (24) + VA (24) MDL 14 D1M + NS 10V XA (24) + VA (25) MDL 14 D1M + NS 10V XA (24) + VA (25) MDL 14 D1M + NS 10V XA (24) + VA (25) MDL 14 D1M + NS 10V XA (24) + VA (25) MDL 14 D1M + NS 10V XA (24) + VA (25) MDL 14 D1M + NS 10V XA (25) + SB (28) MDL 14 D1M + NS 10V XA (25) + SB (28) MDL 14 D1M + NS 10V XA (25) + SB (28) MDL 14 D1M + NS 10V XA (25) + SB (28) MDL 14 D1M + NS 10V XA (25) + SB (28) MDL 14 D1M + NS 10V XA (25) + SB (28) MDL	14
14 D14 NS 11N X 43 (22), W43 (22) MDL 14 D14 NS 10N X 43 (22), W43 (22) MDL 14 D14 NS 10N X 43 (22), W43 (22) MDL 14 D14 NS 10N X 43 (22), W44 (22) MDL 14 D14 NS 10N X 43 (22), W44 (23) MDL 14 D14 NS 10N X 47 (24), W47 (24) MDL 14 D14 NS 10N X 47 (24), W47 (24) MDL 14 D14 NS 10N X 47 (24), W47 (24) MDL 14 D14 NS 10N X 47 (24), W47 (24) MDL 14 D14 NS 10N X 47 (25), F59 (25) MDL 14 D14 NS 10N X54 (27), F59 (25) MDL 14 D14 NS 10N X54 (27), F53 (26) MDL 14 D14 NS 10N X54 (27), F53 (26) MDL 14 D14 NS 10N X54 (27), F53 (26) MDL 14 D14 NS 10N X54 (27), F53 (26) MDL 14 D14 NS 10N X54 (27), F53 (26) MDL 14 D14 NS 10N X54 (27), F53 (26) MDL 14 D14 NS 10N X54 (27), F53 (26) MDL 14 D14 NS 10N X54 (27), F53 (26) MDL 14 D14 NS 10N X54 (27), F53 (26) MDL	15
14 D: Max 3 (22), W44 (22) MDL 14 D: Max 3 (22), W44 (22) MDL 14 D: Max 3 (23), W45 (23) MDL 14 D: Max 3 (24), W47 (24) MDL 14 D: Max 3 (25), W49 (25) MDL 14 D: Max 3 (25), W59 (25) MDL 14 D: Max 3 (25), W59 (25) MDL 14 D: Max 3 (25), W59 (25) MDL 14 D: Max 3 (27), W53 (27), W53 (27) MDL 14 D: Max 3 (27), W53 (27), W53 (27) MDL 14 D: Max 3 (27), W53 (27), W53 (27) MDL 14 D: Max 3 (27), W53 (27), W53 (27) MDL 14 D: Max 3 (27), W53 (27) MDL 14 D: Max 3 (27), W53 (27), W53 (27) MDL 14 D: Max 3 (27), W53 (27), W53 (27) MDL 14 D: Max 3 (27), W54 (27), W53 (27) MDL 14 D: Max 3 (27), W54 (27), W53 (28) MDL 14 D: Max 3 (27), W5	/0
14 D1MENSION XAS(23), MAS(23) MOL 14 D1MENSION XAS(23), MAS(23) MOL 14 D1MENSION XAS(23), MAS(23) MOL 14 D1MENSION XAS(24), MAS(24) MOL 14 D1MENSION XAS(24), MAS(24) MOL 14 D1MENSION XAS(25), WAS(25) MOL 14 D1MENSION XAS(25), WAS(25) MOL 14 D1MENSION XAS(26), WS2(26) MOL 14 D1MENSION XS2(26), WS2(26) MOL 14 D1MENSION XS2(27), WS4(27) MOL 14 D1MENSION XS2(26), WS2(26) MOL 14 D1MENSION XS2(27), WS4(27) MOL 14 D1MENSION XS2(26), WS2(26) MOL 14 D1MENSION XS2(27), WS4(27) MOL 14 D1MENSION XS2(26), WS2(26) MOL 14 D1MENSION XS2(27), WS4(27) MOL 14 D1MENSION XS2(26), WS2(26) MOL 14 D1MENSION XS2(27), WS4(27) MOL 14 D1MENSION XS2(27), WS4(27) MOL 14 D1MENSION XS2(27), WS4(27) MOL 14 D1MENSION XS2(27), WS2(26)	11
14 D1MERS1DN XAR(23), W86(23) MOL 14 D1MERS1DN XAR(23), W86(24) MOL 14 D1MERS1DN XAR(23), W86(24) MOL 14 D1MES1DN XAR(23), W86(25) MOL 14 D1MES1DN XAR(25), W86(25) MOL 14 D1MES1DN XAR(25), W58(26) MOL 14 D1MES1DN XAR(27), W58(26) MOL 14 D1MES1DN XAR(27), W53(27) MOL 14 D1MES1DN XAR(27), W53(27) MOL 14 D1MES1DN X55(26), W52(26) MOL 14 D1MENS1DN X55(26), W52(26) MOL 14 D1MENS1DN X56(26), W52(30) MOL 14 D1MENS1DN X62(31), W6(30) MOL 14 D1MENS1DN X63(22), W64(42) MOL <td>70</td>	70
14 DIMENSION XAC(23), WAR(24) MOL 14 DIMENSION XAC(23), WAR(24) MOL 14 DIMENSION XAC(25), WAR(25) MOL 14 DIMENSION X5(25), WAR(25) MOL 14 DIMENSION X5(25), WAR(25) MOL 14 DIMENSION X5(26), WS2(26) MOL 14 DIMENSION X5(27), WS2(27) MOL 14 DIMENSION X5(27), WS2(27) MOL 14 DIMENSION X5(27), WS2(27) MOL 14 DIMENSION X5(27), WS2(28) MOL 14 DIMENSION X56(28), WS2(28) MOL 14 DIMENSION X56(28), WS5(28) MOL 14 DIMENSION X56(28), WS6(28) MOL 14 DIMENSION X56(28), WS6(28) MOL 14 DIMENSION X56(23), WS6(39) MOL 14 DIMENSION X50(23), WS6(32) MOL 14 DIMENSION X66(32), W66(32) MOL 14 DIMENSION X66(32), W66(32) MOL 14 DIMENSION X66(32), W66(48) MOL 14 DIMENSION X66(31), W(13), W(13) <td>80</td>	80
14 Differsion Control Mol	AL
14 DimEnsion X51(25), K51(26) HOL 14 DimEnsion X51(26), K51(26) HOL 14 DimEnsion X51(26), K51(26) HOL 14 DimEnsion X51(27), K53(27) HOL 14 DimEnsion X51(27), K53(27) HOL 14 DimEnsion X51(27), K53(27) HOL 14 DimEnsion X51(28), K51(28) HOL 14 DimEnsion X59(38), K59(38) HOL 14 DimEnsion X59(38), K59(38) HOL 14 DimEnsion X61(31), K61(31) HOL 14 DimEnsion X64(32), K64(32) HOL 14 EduIVALENCE(X2(1), X(13), (82
14 Diff. No in X is (26), WS (26) MOL 14 Diff. NS ION X is (26), WS (26) MOL 14 Diff. NS ION X is (27), WS (27) MOL 14 Diff. NS ION X is (27), WS (27) MOL 14 Diff. NS ION X is (27), WS 4(27) MOL 14 Diff. NS ION X is (27), WS 4(27) MOL 14 Diff. NS ION X is (27), WS 4(27) MOL 14 Diff. NS ION X is (27), WS 4(27) MOL 14 Diff. NS ION X is (27), WS 4(27) MOL 14 Diff. NS ION X is (28), WS 6(28) MOL 14 Diff. NS ION X is (28), WS 6(28) MOL 14 Diff. NS ION X is (31), W6 7(30) MOL 14 Diff. NS ION X is (31), W6 7(30) MOL 14 Diff. NS ION X is (32), W6 3(32) MOL 14 Diff. NS ION X is (32), W6 3(32) MOL 14 Diff. NS ION X is (32), W6 3(32) MOL 14 Diff. NS ION X is (32), W6 3(32) MOL 14 Diff. NS ION X is (32), W6 3(32) MOL 14 Diff. NS ION X is (32), W6 3	87
14 DIMENSION X22(26),W52(26) MOL 14 DIMENSION X52(27),W53(27) MOL 14 DIMENSION X55(27),W53(27) MOL 14 DIMENSION X55(28),W55(28) MOL 14 DIMENSION X55(28),W55(28) MOL 14 DIMENSION X55(28),W55(28) MOL 14 DIMENSION X55(28),W55(28) MOL 14 DIMENSION X55(28),W56(29) MOL 14 DIMENSION X57(25),W57(29) MOL 14 DIMENSION X57(25),W57(29) MOL 14 DIMENSION X56(29),W58(29) MOL 14 DIMENSION X56(28),W56(29) MOL 14 DIMENSION X66(30),W56(30) MOL 14 DIMENSION X61(31),W61(31) MOL 14 DIMENSION X61(32),W64(32) MOL 14 DIMENSION X66(32),W66(30) MOL 14 DIMENSION X66(46),W66(48) MOL 14 DIMENSION X66(46),W66(48) MOL 14 DIMENSION X66(46),W66(48) MOL 14 EQUIVALENCE(X2(1),X(10),(W6(1),W(10)) MOL 14 EQUIVALENCE(X2(1),X(10),(W6(1),W(10))	RU
Image: Sign (Sign) (S	AS
14 DIMENSION X54(27), M34(27) MOL 14 DIMENSION X55(28), M55(28) MOL 14 DIMENSION X56(28), M55(28) MOL 14 DIMENSION X56(28), M57(29) MOL 14 DIMENSION X57(25), M57(30) MOL 14 DIMENSION X67(31), W67(31) MOL 14 DIMENSION X63(32), W63(32) MOL 14 DIMENSION X64(32), W64(32) MOL 14 DIMENSION X64(32), W64(32) MOL 14 DIMENSION X64(42), X(40) MOL 14 DIMENSION X64(42), X(40), (W3(1), W(40) MOL 14 FOUTVALENCE(X2(1), X(40), (W3(1), W(40)) MOL 14 FO	86
14 DIMENSION X55(28), W55(28) MOL 14 DIMENSION X56(28), K56(28) MOL 14 DIMENSION X56(28), K56(28) MOL 14 DIMENSION X56(29), K56(28) MOL 14 DIMENSION X56(30), K59(38) MOL 14 DIMENSION X60(30), K59(38) MOL 14 DIMENSION X60(30), K59(38) MOL 14 DIMENSION X60(30), K60(30) MOL 14 DIMENSION X60(32), K63(32) MOL 14 DIMENSION X60(40), K60(48) MOL 14 DIMENSION X60(40), K60(48) MOL 14 DIMENSION X60(40), K60(48) MOL 14 EQUIVALENCE(X2(1), X(10), (W2(1), W(10)) MOL 14 EQUIVALENCE(X2(1), X(20), (W3(1), W(20)) MOL 14 EQUIVALENCE(X3(1), X(20), (W3(1), W(20)) MOL 14 EQUIVALENCE(X3(1), X(20), (W3(1), W(20)) MOL 14 EQUIVALENCE(X3(1), X(20), (W3(1), W(20)) MOL	87
14 DTMENSION X56(28), N56(28) MOL 14 DTMENSION X57(27), M57(28) MOL 14 DTMENSION X57(28), M57(28) MOL 14 DTMENSION X58(29), W59(38) MOL 14 DTMENSION X58(29), W59(38) MOL 14 DTMENSION X56(30), W69(30) MOL 14 DTMENSION X66(31), W69(30) MOL 14 DTMENSION X62(31), W62(31) MOL 14 DTMENSION X62(31), W62(32) MOL 14 DTMENSION X64(32), W64(32) MOL 14 DTMENSION X66(43), W66(46) MOL 14 DTMENSION X96(46), W66(46) MOL 14 EQUIVALENCE(X2(1), X(10), (W2(1), W(10)) MOL 14 EQUIVALENCE(X3(1), X(20), (W3(1), W(10)) MOL 14 EQUIVALENCE(X3(1), X(10)), (W3(1), W(10)) MOL 14 EQUIVALENCE(X5(1), X(10)), (W6(1), W(10)) MOL <	88
14 DIMENSION X57(25), W57(29) MOL 14 DIMENSION X57(25), W57(29) MOL 14 DIMENSION X58(29), W58(29) MOL 14 DIMENSION X59(30), W59(30) MOL 14 DIMENSION X69(30), W69(30) MOL 14 DIMENSION X61(31), W60(30) MOL 14 DIMENSION X62(31), W60(30) MOL 14 DIMENSION X62(31), W62(31) MOL 14 DIMENSION X63(32), W63(32) MOL 14 DIMENSION X64(32), W64(32) MOL 14 EQUIVALENCE(X2(1), X(10), (W2(1), W(10)) MOL 14 EQUIVALENCE(X3(1), X(20), (W3(1), W(20)) MOL 14 EQUIVALENCE(X5(1), X(10), (W6(1), W(10)) MOL 14	89
14 DIMENSION XS8(29), W58(29) MOL 14 DIMENSION X59(30), W59(30) MOL 14 DIMENSION X59(30), W59(30) MOL 14 DIMENSION X59(30), W59(30) MOL 14 DIMENSION X59(30), W69(30) MOL 14 DIMENSION X61(31), W61(31) MOL 14 DIMENSION X63(32), W63(32) MOL 14 DIMENSION X64(32), W64(32) MOL 14 DIMENSION X64(32), W64(20) MOL 14 DIMENSION X64(32), W64(20) MOL 14 DIMENSION X96(48), W86(48) MOL 14 DIMENSION X96(48), W86(48) MOL 14 EQUIVALENCE(X2(1), X(-13), (W2(1), W(-13)) MOL 14 EQUIVALENCE(X3(1), X(-23), (W3(1), W(-23)) MOL 14 EQUIVALENCE(X3(1), X(-3), (W4(1), W(-3)) MOL 14 EQUIVALENCE(X6(1), X(-3), (W6(1), W(-3)) MOL 14 EQUIVALENCE(X6(1), X(-3), (W6(1), W(-30)) MOL 14 EQUIVALENCE(X6(1), X(-20), (W10(1), W(-20)) MOL 14 EQUIVALENCE(X10(1), X(-20), (W10(1), W(-20)) MOL 14 EQUIVALENCE(X10(1), X(-20	90
14 DIMENSION X59(30), W59(30) MOL 14 DIMENSION X60(30), W69(30) MOL 14 DIMENSION X60(31), W60(30) MOL 14 DIMENSION X61(31), W61(31) MOL 14 DIMENSION X63(32), W63(32) MOL 14 DIMENSION X63(32), W63(32) MOL 14 DIMENSION X63(32), W63(32) MOL 14 DIMENSION X64(32), W64(32) MOL 14 DIMENSION X64(32), W64(32) MOL 14 DIMENSION X64(32), W64(43) MOL 14 DIMENSION X64(32), W64(43) MOL 14 DIMENSION X64(32), W64(43) MOL 14 DIMENSION X64(43), W80(48) MOL 14 DIMENSION X64(31), X(13), (W2(1), W(13)) MOL 14 FOUTVALENCE(X2(1), X(13), (W4(1), W(13)) MOL 14 EQUTVALENCE(X3(1), X(12)), (W3(1), W(12)) MOL 14 EQUTVALENCE(X6(1), X(12)), (W6(1), W(12)) MOL 14 EQUTVALENCE(X6(5), X(16)), (W6(1), W(12)) MOL 14 EQUTVALENCE(X10), X(12), (W1(1), W(12)) MOL 14 EQUTVALENCE(X11(1), X(16)), (W1(1), W(130))	91
14 DIMENSION X60(30), W60(30) MDL 14 DIMENSION X61(31), W61(31) MOL 14 DIMENSION X61(32), W63(32) MOL 14 DIMENSION X63(32), W63(32) MOL 14 DIMENSION X63(42), W63(42) MOL 14 DIMENSION X63(42), W63(42) MOL 14 DIMENSION X63(42), W63(42) MOL 14 DIMENSION X64(42), W63(42) MOL 14 DIMENSION X64(42), W64(43) MOL 14 EQUIVALENCE(X271), X(13), (W2(1), W(13)) MOL 14 EQUIVALENCE(X271), X(13), (W2(1), W(23)) MOL 14 EQUIVALENCE(X271), X(13), (W2(1), W(23)) MOL 14 EQUIVALENCE(X1), X(12), (W3(1), W(23)) MOL 14 EQUIVALENCE(X1), X(12), (W1(1), W(12)) MOL 14 EQUIVALENCE(X1), X(13), (W1(1), W(12)) MOL 14 EQUIVALENCE(X1), X(13), (W1(1), W(25)) MOL 14 EQUIVALENCE(X1), X(16)), (W1(1), W(25)) MOL 14 EQUIVALENCE(X1), X(16)), (W1(1), W(30)) MOL 14 EQUIVALENCE(X10), X(10), (W1(1	92
14 DINENSTON X61(31),W61(31) MOL 14 DIMENSTON X62(31),W62(31) MOL 14 DIMENSTON X63(32),W63(32) MOL 14 DIMENSTON X64(32),W64(32) MOL 14 DIMENSTON X64(32),W64(48) MOL 14 DIMENSTON X66(48),W96(48) MOL 14 DIMENSTON X96(48),W96(48) MOL 14 DIMENSTON X96(48),W96(48) MOL 14 EQUIVALENCE(X2(1),X(10),W12(1),W(10)) MOL 14 EQUIVALENCE(X3(1),X(10),W12(1),W(10)) MOL 14 EQUIVALENCE(X3(1),X(10),W13(1),W(10)) MOL 14 EQUIVALENCE(X10(1),X(10),W110),W(10)) MOL 14 EQUIVALENCE(X10(1),X(10),W110),W110) MOL 14 EQUIVALENCE(X10(1),X(10),W110),W110) MOL 14 EQUIVALENCE(X10(1),X(10)),W110),W1100) MOL 14 EQUIVALENCE(X10(1),X(10)),W1100) MOL	93
14 DIMENSTON X62(31), W62(31) MOL 14 DIMENSTON X63(32), W63(32) MOL 14 DIMENSTON X64(32), W64(32) MOL 14 DIMENSTON X64(32), W64(32) MOL 14 DIMENSTON X64(32), W64(32) MOL 14 DIMENSTON X64(32), W64(20) MOL 14 DIMENSTON X96(46), W96(48) MOL 14 DIMENSTON X96(46), W96(48) MOL 14 FOUTVALENCE(X2(1), X(-11), (W2(1), W(-11)) MOL 14 EQUIVALENCE(X3(1), X(-21), (W3(1), W(-21)) MOL 14 EQUIVALENCE(X3(1), X(-21), (W3(1), W(-21)) MOL 14 EQUIVALENCE(X3(1), X(-21), (W3(1), W(-21)) MOL 14 EQUIVALENCE(X5(1), X(-21), (W3(1), W(-21)) MOL 14 EQUIVALENCE(X6(1), X(-21), (W6(1), W(-20)) MOL 14 EQUIVALENCE(X6(1), X(-20), (W6(1), W(-20)) MOL 14 EQUIVALENCE(X1(1), X(-20), (W1(1), W(-20)) MOL 14 EQUIVALENCE(X1(1), X(-20), (W1(1), W(-20)) MOL 14 EQUIVALENCE(X1(1), X(-20), (W1(2(1), W(-20))) MOL 14 EQUIVALENCE(X1(10), X(-20), (W1(10), W(-20))) MOL	94
14 DIMENSION X64(32), W64(32) HOL 14 DIMENSION X66(48), W96(48) HOL 14 FOUIVALENCE(X2(1), X(1)), (W2(1), W(1)) HOL 14 EQUIVALENCE(X3(1), X(2)), (W3(1), W(2)) HOL 14 EQUIVALENCE(X3(1), X(10)), (W3(1), W(2)) HOL 14 EQUIVALENCE(X5(1), X(10)), (W3(1), W(1)) HOL 14 EQUIVALENCE(X5(1), X(10)), (W5(1), W(12)) HOL 14 EQUIVALENCE(X5(1), X(10)), (W6(1), W(12)) HOL 14 EQUIVALENCE(X5(1), X(10)), (W6(1), W(12)) HOL 14 EQUIVALENCE(X1(1), X(10)), (W1(1)), W(12)) HOL 14 EQUIVALENCE(X1(1), X(10)), (W1(20)) HOL 14 EQUIVALENCE(X1(1), X(10)), (W120) HOL 14 EQUIVALENCE(X11(1), X(10)), (W120) HOL 14 EQUIVALENCE(X11(1), X(10)), (W120) HOL 14 <td>95</td>	95
14 DIMENSION X64(32), W64(32) MOL 14 DIMENSION X60(40), W60(40) MOL 14 DIMENSION X96(46), W96(46) MOL 14 DIMENSION X96(46), W96(46) MOL 14 DIMENSION X96(46), W96(46) MOL 14 FOUIVALENCE(X2(1), X(-13), (W2(1), W(-15)) MOL 14 FOUIVALENCE(X2(1), X(-23), (W3(1), W(-23)) MOL 14 EQUIVALENCE(X5(1), X(-3)), (W3(1), W(-63)) MOL 14 EQUIVALENCE(X5(1), X(-3)), (W3(1), W(-63)) MOL 14 EQUIVALENCE(X5(1), X(-12)), (W7(1), W(-12)) MOL 14 EQUIVALENCE(X6(1), X(-10)), (W6(1), W(-16)) MOL 14 EQUIVALENCE(X10(1), X(-12)), (W7(1), W(-12)) MOL 14 EQUIVALENCE(X10(1), X(-10)), (W1(1), W(-20)) MOL 14 EQUIVALENCE(X10(1), X(-30)), (W1(1), W(-20)) MOL 14 EQUIVALENCE(X10(1), X(-30)), (W1(1), W(-30)) MOL 14 EQUIVALENCE(X10(1), X(-30)), (W1(1)), W(-30)) MOL 14 EQUIVALENCE(X10(1), X(-30)), (W1(1), W(-30)) MOL 14 EQUIVALENCE(X10(1), X(-30)), (W1(10), W(-30)) MOL 14 EQUIVAL	96
14 DIMENSION X80(40), W80(40) MOL 14 DIMENSION X96(48), W96(48) MOL 14 DIMENSION X96(48), W96(48) MOL 14 FOUIVALENCE(X2(1), X(-13), (W2(1), W(-13)) MOL 14 FOUIVALENCE(X2(1), X(-13), (W2(1), W(-13)) MOL 14 FOUIVALENCE(X3(1), X(-23), (W3(1), W(-23)) MOL 14 FOUIVALENCE(X5(1), X(-3)), (W5(1), W(-63)) MOL 14 FOUIVALENCE(X5(1), X(-3)), (W5(1), W(-63)) MOL 14 FOUIVALENCE(X5(1), X(-3)), (W5(1), W(-63)) MOL 14 FOUIVALENCE(X5(1), X(-3)), (W6(1), W(-63)) MOL 14 FOUIVALENCE(X5(1), X(-20)), (W6(1), W(-20)) MOL 14 FOUIVALENCE(X1(1), X(-20)), (W1(1), W(-20)) MOL 14 FOUIVALENCE(X1(1), X(-30)), (W1(1), W(-20)) MOL 14 EQUIVALENCE(X1(1), X(-30)), (W1(1), W(-30)) MOL 14<	97
14 DIMENSION X96(46), W96(46) MCL C NOL 14 FOUJVALENCE(X2(1), X(-13), (W2(1), W(-13)) MOL 14 FOUJVALENCE(X3(1), X(-23), (W3(1), W(-23)) MOL 14 EQUJVALENCE(X4(1), X(-23), (W3(1), W(-23)) MOL 14 EQUJVALENCE(X4(1), X(-93), (W4(1), X(-43)) MOL 14 EQUJVALENCE(X5(1), X(-93), (W4(1), W(-23)) MOL 14 EQUJVALENCE(X5(1), X(-93), (W5(1), W(-93)) MOL 14 EQUJVALENCE(X5(1), X(-93), (W5(1), W(-93)) MOL 14 EQUJVALENCE(X5(1), X(-93), (W6(1), W(-93)) MOL 14 EQUJVALENCE(X5(1), X(-93), (W6(1), W(-93)) MOL 14 EQUJVALENCE(X10(1), X(-253), (W10(1), W(-253)) MOL 14 EQUIVALENCE(X10(1), X(-253), (W10(1), W(-253)) MOL 14	98
C MOL 14 FGUITVALENCE(X2(1),X(1)),(W2(1),W(1)) MOL 14 EQUIVALENCE(X3(1),X(2)),(W3(1),W(2)) MOL 14 EQUIVALENCE(X3(1),X(2)),(W3(1),W(2)) MOL 14 EQUIVALENCE(X3(1),X(2)),(W3(1),W(2)) MOL 14 EQUIVALENCE(X3(1),X(2)),(W3(1),W(2)) MOL 14 EQUIVALENCE(X5(1),X(2)),(W5(1),W(2)) MOL 14 EQUIVALENCE(X6(1),X(2)),(W6(1),W(2)) MOL 14 EQUIVALENCE(X6(1),X(2)),(W6(1),W(20)) MOL 14 EQUIVALENCE(X6(1),X(20)),(W6(1),W(20)) MOL 14 EQUIVALENCE(X1(1),X(20)),(W6(1),W(20)) MOL 14 EQUIVALENCE(X1(1),X(20)),(W10(1),W(20)) MOL 14 EQUIVALENCE(X1(1),X(20)),(W10(1),W(20)) MOL 14 EQUIVALENCE(X1(1),X(30)),(W10(1),W(30)) MOL 14 EQUIVALENCE(X10(1),X(20)),(W10(1),W(30)) MOL 14 EQUIVALENCE(X10(1),X(30)),(W10(1),W(30)) MOL 14 EQUIVALENCE(X10(1),X(30)),(W10(1),W(30)) MOL 14 EQUIVALENCE(X10(1),X(30)),(W10(1),W(40)) MOL	99
C MOL 14 FOUTVALENCE(X2(1),X(13),(W2(1),W(1)) MOL 14 EQUIVALENCE(X2(1),X(2)),(W3(1),W(2)) MOL 14 EQUIVALENCE(X3(1),X(2)),(W3(1),W(2)) MOL 14 EQUIVALENCE(X5(1),X(2)),(W3(1),W(2)) MOL 14 EQUIVALENCE(X5(1),X(2)),(W3(1),W(2)) MOL 14 EQUIVALENCE(X5(1),X(2)),(W5(1),W(2)) MOL 14 EQUIVALENCE(X6(1),X(2)),(W6(1),W(20)) MOL 14 EQUIVALENCE(X6(1),X(20)),(W6(1),W(20)) MOL 14 EQUIVALENCE(X1(1),X(20)),(W6(1),W(20)) MOL 14 EQUIVALENCE(X1(1),X(20)),(W1(1),W(20)) MOL 14 EQUIVALENCE(X1(1),X(20)),(W1(20)) MOL 14 EQUIVALENCE(X1(1),X(20)),(W1(20)) MOL 14 EQUIVALENCE(X1(1),X(20)),(W1(20)) MOL 14	100
14 FGUITVALENCE(x2(1),x(1)),(W2(1),W(1)) MOL 14 FGUITVALENCE(x3(1),x(2)),(W3(1),W(2)) MOL 14 FGUITVALENCE(x3(1),x(0)),(W4(1),A(0)) MOL 14 FGUITVALENCE(x5(1),x(0)),(W5(1),W(0)) MOL 14 FGUITVALENCE(x5(1),x(0)),(W5(1),W(0)) MOL 14 FGUITVALENCE(x5(1),x(10)),(W5(1),W(10)) MOL 14 FGUITVALENCE(x5(1),x(10)),(W6(1),W(10)) MOL 14 FGUITVALENCE(x7(1),x(10)),(W6(1),W(10)) MOL 14 FGUITVALENCE(x10(1),x(20)),(W1(1),W(20)) MOL 14 FGUITVALENCE(x10(1),x(20)),(W1(1),W(20)) MOL 14 FGUITVALENCE(x11(1),x(30)),(W1(1),W(30)) MOL 14 EQUITVALENCE(x11(1),x(40)),(W1(1),W(40)) MOL 14 EQUITVALENCE(x11(1),x(50)),(W15(1),W(50)) MOL 14 EQUITVALENCE(x11(1),x(50)),(W15(1),W(50)) MOL <td>101</td>	101
14 EQUIVALENCE(x3(1),x(-2)),(W3(1),W(-2)) MOL 14 EQUIVALENCE(x4(1),X(-4)),(W4(1),W(-4)) MOL 14 EQUIVALENCE(x5(1),X(-4)),(W5(1),W(-6)) MOL 14 EQUIVALENCE(x5(1),X(-4)),(W5(1),W(-9)) MOL 14 EQUIVALENCE(x5(1),X(-4)),(W5(1),W(-9)) MOL 14 EQUIVALENCE(x5(1),X(-10)),(W5(1),W(-10)) MOL 14 EQUIVALENCE(x5(1),X(-20)),(W7(1),W(-20)) MOL 14 EQUIVALENCE(x5(1),X(-20)),(W7(1),W(-20)) MOL 14 EQUIVALENCE(x10(1),X(-20)),(W10(1),W(-20)) MOL 14 EQUIVALENCE(x10(1),X(-20)),(W10(1),W(-20)) MOL 14 EQUIVALENCE(x11(1),X(-20)),(W10(1),W(-20)) MOL 14 EQUIVALENCE(x11(1),X(-20)),(W10(1),W(-20)) MOL 14 EQUIVALENCE(x11(1),X(-20)),(W10(1),W(-20)) MOL 14 EQUIVALENCE(x11(1),X(-07)),(W14(1),W(-40)) MOL 14 EQUIVALENCE(x11(1),X(-07)),(W14(1),W(-40)) MOL 14 EQUIVALENCE(x11(1),X(-07)),(W14(1),W(-40)) MOL 14 EQUIVALENCE(x11(1),X(-50)),(W14(1),W(-40)) MOL 14 EQUIVALENCE(x11(1),X(-50)),(W14(1),W(-40)) MOL	102
14 ERUIVALENCE(x4(1),x(-4)),(W4(1),W(-4)) MOL 14 ERUIVALENCE(x5(1),x(-4)),(W5(1),W(-6)) MOL 14 ERUIVALENCE(x6(1),x(-4)),(W6(1),W(-6)) MOL 14 ERUIVALENCE(x6(1),x(-4)),(W6(1),W(-16)) MOL 14 ERUIVALENCE(x6(1),x(-16)),(W6(1),W(-16)) MOL 14 ERUIVALENCE(x6(1),x(-16)),(W6(1),W(-20)) MOL 14 ERUIVALENCE(x10(1),x(-25)),(W10(1),W(-25)) MOL 14 ERUIVALENCE(x11(1),x(-25)),(W10(1),W(-25)) MOL 14 ERUIVALENCE(x11(1),x(-25)),(W10(1),W(-25)) MOL 14 ERUIVALENCE(x11(1),x(-25)),(W10(1),W(-25)) MOL 14 ERUIVALENCE(x110(1),x(-25)),(W10(1),W(-25)) MOL 14 ERUIVALENCE(x110(1),x(-25)),(W12(1),W(-36)) MOL 14 ERUIVALENCE(x110(1),x(-25)),(W12(1),W(-25)) MOL	103
14 FQUIVALENCE(xs(1),x(b)),(Ws(1),W(b)) MOL 14 FQUIVALENCE(xs(1),x(12)),(Wf(1),W(12)) MOL 14 FQUIVALENCE(xs(1),x(16)),(Wf(1),W(16)) MOL 14 FQUIVALENCE(xs(1),x(16)),(Wf(1),W(20)) MOL 14 FQUIVALENCE(xs(1),x(20)),(Wf(1),W(20)) MOL 14 FQUIVALENCE(xs(1),x(25)),(Wf(1),W(20)) MOL 14 FQUIVALENCE(xs(1),x(25)),(Wf(1),W(25)) MOL 14 FQUIVALENCE(xs(1),x(30)),(W1(1),W(30)) MOL 14 EQUIVALENCE(xs(1),x(30)),(W1(2(1),W(30)) MOL 14 EQUIVALENCE(xs(1),x(30)),(W1(1),W(42)) MOL 14 EQUIVALENCE(xs(1),x(50)),(W15(1),W(50)) MOL </td <td>104</td>	104
14 EQUIVALENCE(x5(1),x(12)),(H5(1),H(12)) HOL 14 EQUIVALENCE(x5(1),x(12)),(H5(1),H(12)) HOL 14 EQUIVALENCE(x6(1),x(10)),(H6(1),H(16)) HOL 14 EQUIVALENCE(x7(1),x(120)),(H9(1),H(120)) HOL 14 EQUIVALENCE(x7(1),x(120)),(H9(1),H(120)) HOL 14 EQUIVALENCE(x17(1),x(120)),(H11(1),H(120)) HOL 14 EQUIVALENCE(x11(1),x(130)),(H11(1),H(130)) HOL 14 EQUIVALENCE(x12(1),x(130)),(H11(1),H(130)) HOL 14 EQUIVALENCE(x12(1),x(130)),(H12(1),H(130)) HOL 14 EQUIVALENCE(x12(1),x(142)),(H12(1),H(142)) HOL 14 EQUIVALENCE(x11(1),x(140)),(H14(1),H(140)) HOL 14 EQUIVALENCE(X11(1),x(150)),(H14(1),H(140)) HOL <td>105</td>	105
14 FOULVALENCE(XA(1))X(12))X(14))W(12)) FOUL 14 FOULVALENCE(XA(1))X(12))W(1)W(12)) MOL 14 EQUIVALENCE(XA(1))X(12))W(1)W(12)) HOL 14 FOULVALENCE(X1(1))X(12))W(1)W(12))W(12))W(10)W(10)W(10)W(10)W(10)W(10)) HOL 14 EQUIVALENCE(X1(1))X(130))W(11(1)W(130))W(10)W(10)W(10)W(10)W(10)W(10)W(10)W(120
14 EQUIVALENCE(x96(1),x(20)),(W0(1),W(20)) HCL 14 EQUIVALENCE(x10(1),x(25)),(W10(1),W(25)) HDL 14 EQUIVALENCE(x11(1),x(25)),(W10(1),W(25)) HDL 14 EQUIVALENCE(x12(1),x(36)),(W11(1),W(36)) HOL 14 EQUIVALENCE(x12(1),x(36)),(W12(1),W(36)) HOL 14 EQUIVALENCE(x12(1),x(36)),(W14(1),W(36)) HOL 14 EQUIVALENCE(x13(1),x(36)),(W14(1),W(42)) HOL 14 EQUIVALENCE(x13(1),x(36)),(W14(1),W(49)) HOL 14 EQUIVALENCE(x13(1),x(56)),(W15(1),W(56)) HOL 14 EQUIVALENCE(x13(1),x(56)),(W14(1),W(49)) HOL 14 EQUIVALENCE(X13(1),x(56)),(W15(1),W(56)) HOL	100
14 EGUIVALENCE(x1(1),x(25)),(w10(1),w(25)) MOL 14 EQUIVALENCE(x11(1),x(30)),(w11(1),w(30)) MOL 14 EQUIVALENCE(x11(1),x(30)),(w11(1),w(30)) MOL 14 EQUIVALENCE(x11(1),x(30)),(w12(1),w(30)) MOL 14 EQUIVALENCE(x11(1),x(30)),(w12(1),w(30)) MOL 14 EQUIVALENCE(x13(1),x(30)),(w12(1),w(30)) MOL 14 EQUIVALENCE(x13(1),x(30)),(w14(1),w(30)) MOL 14 EQUIVALENCE(x13(1),x(30)),(w14(1),w(30)) MOL 14 EQUIVALENCE(x13(1),x(50)),(w15(1),w(50)) MOL 14 EQUIVALENCE(x13(1),x(50)),(w14(1),w(30)) MOL 14 EQUIVALENCE(x15(1),x(50)),(w15(1),w(50)) MOL	100
14 EQUIVALENCE(x1:(1),x(3D)),(M1(1)),W(3D)) NOL 14 EQUIVALENCE(x1:(1),x(3D)),(M1(1)),W(3D)) MOL 14 EQUIVALENCE(x1:(1),x(3D)),(M1(1)),W(3D)) MOL 14 EQUIVALENCE(x1:(1),x(3D)),(M1(1)),W(3D)) MOL 14 EQUIVALENCE(x1:(1),x(3D)),(M1(1)),W(4D)) MOL 14 EQUIVALENCE(x1:(1),x(4D)),(M1(1)),W(4D)) MOL 14 EQUIVALENCE(x1:(1),x(5D)),(M1(1)),W(4D)) MOL 14 EQUIVALENCE(x1:(1),x(5D)),(M1(1)),W(4D)) MOL 14 EQUIVALENCE(x1:(1),x(5D)),(M1(1)),W(5D)) MOL 14 EQUIVALENCE(x1:(1),x(5D)),(M1(1)),W(5D)) MOL	110
14 EQUIVALENCE(X12(1),X(36)),(W12(1),W(36)) MOL 14 EQUIVALENCE(X13(1),X(42)),(W13(1),W(42)) MOL 14 EQUIVALENCE(X13(1),X(42)),(W13(1),W(42)) MOL 14 EQUIVALENCE(X13(1),X(47)),(W14(1),W(49)) MOL 14 EQUIVALENCE(X13(1),X(47)),(W14(1),W(49)) MOL 14 EQUIVALENCE(X13(1),X(47)),(W14(1),W(49)) MOL 14 EQUIVALENCE(X13(1),X(47)),(W14(1),W(49)) MOL 14 EQUIVALENCE(X13(1),X(47)),(W15(1),W(56)) MOL	111
14 EQUIVALENCE(X13(1),X(42)),(W13(1),W(42)) MOL 14 EQUIVALENCE(X14(1),X(47)),(W14(1),W(49)) MOL 14 EQUIVALENCE(X14(1),X(47)),(W14(1),W(49)) MOL 14 EQUIVALENCE(X15(1),X(56)),(W15(1),W(56)) MOL	112
14 EQUIVALENCE(X14(1),X(47)),(X14(1),W(47)) MOL 14 EQUIVALENCE(X15(1),X(56)),(M15(1),W(56)) MOL 14 EQUIVALENCE(X15(1),X(56)),(M15(1),W(56)) MOL	113
14 EQUIVALENCE(N15(1), x(56)), (#15(1), W(56)) MOL	114
	115
	116
14 ERUIVALENCE (X17(1), X(72)), (x17(1), W(72)) MDL	117
14 EQUIVALENCE(Y16(1), X(31)), (#18(1), W(81)) MOL	118
14 EQUIVALENCE(X10(1),X(90)), (W10(1),W(90)) MOL	119
14 EQUIVALENCE(X20(1), X(188)), (W20(1), W(100)) MOL	128

Image: Property and the set of t		RUN-107	0			GL	EGI	EN			76/	04/	09		20.	13,03	PAR	KERZZUR	PAGE	NO.	3	
14 F.GUTVALENCE (V22(1), K(121)) MOL 1 14 F.GUTVALENCE (V23(1), K(121)), (V22(1), K(123)) MOL 1 14 F.GUTVALENCE (V23(1), K(142)), (V24(1), K(144)) MOL 1 14 F.GUTVALENCE (V23(1), K(144)), (V24(1), K(144)) MOL 1 14 F.GUTVALENCE (V23(1), K(147)), (V26(1), K(169)) MOL 1 14 F.GUTVALENCE (V23(1), K(147)), (V26(1), K(169)) MOL 1 14 F.GUTVALENCE (V23(1), K(147)), (V26(1), K(126)) MOL 1 14 F.GUTVALENCE (V23(1), K(240)), (K3(1), K(225)) MOL 1 14 F.GUTVALENCE (V23(1), K(240)), (K3(1), K(225)) MOL 1 14 F.GUTVALENCE (X35(1), K(342)), (K3(1), K(226)) MOL 1 14 F.GUTVALENCE (X35(1), K(342)), (K3(1), K(220)) MOL 1 14 F.GUTVALENCE (X36(1), K(342)), (K3(1), K(230)) MOL 1 14 F.GUTVALENCE (X36(1), K(342)), (K3(1), K(320)) MOL 1 14 F.GUTVALENCE (X36(1), K(342)), (K3(1), K(320)) MOL 1 14 F.GUTVALENCE	14	EQU	IVA	LENG	ECX	215	1)	. * (110)), ()	1210	1),	-	10))				MOL			121
14 EGUTVALENCE (x 2: (1), x (1:42)), x (1:42)] MOL 1 14 EGUTVALENCE (x 2: (1), x (1:40)), (x 2: (1), x (1:40)) MOL 1 14 EGUTVALENCE (x 2: (1), x (1:40)), (x 2: (1), x (1:40)) MOL 1 14 EGUTVALENCE (x 2: (1), x (1:40)), (x 2: (1), x (1:40)) MOL 1 14 EGUTVALENCE (x 2: (1), x (1:40)), (x 2: (1), x (1:40)) MOL 1 14 EGUTVALENCE (x 2: (1), x (1:40)), (x 2: (1), x (2: (2: (1)), (x 2: (2: (1)), (x 2: (2: (2: (2: (2: (2: (2: (2: (2: (1)), (x 2: (2: (2: (2: (2: (2: (2: (2: (2: (2:	14	FGU	AVI	LENG	CECX	22(1)	X (121)	1, ()	1221	1),	WC	21))				MOL			122
14 EQUIVALENCE (x2c(1), x(140)), (w2c(1), w(140)) MOL 1 14 EQUIVALENCE (x2c(1), x(156)), (w2c(1), w(156)) MOL 1 14 EQUIVALENCE (x2c(1), x(160)), (w2c(1), w(162)) MOL 1 14 EQUIVALENCE (x2c(1), x(162)), (w2c(1), w(162)) MOL 1 14 EQUIVALENCE (x2c(1), x(162)), (w2c(1), w(162)) MOL 1 14 EQUIVALENCE (x2c(1), x(218)), (w2c(1), w(2c0)) MOL 1 14 EQUIVALENCE (x3c(1), x(228)), (w3c(1), w(2c0)) MOL 1 14 EQUIVALENCE (x3c(1), x(220)), (w3c(1), w(2c0)) MOL 1 14 EQUIVALENCE (x3c(1), x(272)), (w3c(1), w(2c0)) MOL 1 14 EQUIVALENCE (x3c(1), x(272)), (w3c(1), w(2c0)) MOL 1 14 EQUIVALENCE (x3c(1), x(23e)), (w3c(1), w(2a0)) MOL 1 14 EQUIVALENCE (x3c(1), x(3a2)), (w3c(1), w(2a0)) MOL 1 14 EQUIVALENCE (x3c(1), x(3a2)), (w3c(1), w(2a0)) MOL 1 14 EQUIVALENCE (x3c(1), x(3a2)), (w3c(1), w(3a0)) MOL 1 14 E	14	EQU	IVA	LENC	ECX	23(1)	xt	132)) . ()	1230	1),	WCI	32))				MOL			123
14 EOUTVALENCE (x2s(1), x(150)), (w2s(1), w(150)) MOL 1 14 EOUTVALENCE (x2s(1), x(169)), (w2s(1), w(169)) MOL 1 14 EOUTVALENCE (x2s(1), x(196)), (w2s(1), w(210)) MOL 1 14 EOUTVALENCE (x3s(1), x(225)), (w2s(1), w(225)) MOL 1 14 EOUTVALENCE (x3s(1), x(225)), (w3s(1), w(225)) MOL 1 14 EOUTVALENCE (x3s(1), x(256)), (w3s(1), w(225)) MOL 1 14 EOUTVALENCE (x3s(1), x(256)), (w3s(1), w(256)) MOL 1 14 EOUTVALENCE (x3s(1), x(276)), (w3s(1), w(287)) MOL 1 14 EOUTVALENCE (x3s(1), x(346)), (w3s(1), w(366)) MOL 1 14 EOUTVALENCE (x3s(1), x(346)), (w3s(1), w(366)) MOL 1 14 EOUTVALENCE (x3s(1), x(346)), (w3s(1), w(366)) MOL 1 15 EOUTVALENCE (x3s(1), x(346)), (w3s(1), w(366)) MOL 1 16 EOUTVALENCE (x3s(1), x(346)), (w3s(1), w(366)) MOL 1 16 EOUTVALENCE (x3s(1), x(346)), (w3s(1), w(362)) MOL 1 17 E	14	EQU	IVA	LENO	CECX	24(1)	. × (144)	3, ()	240	1).	W()	44))				MOL			124
14 EOUTVALENCE (x2c(1), x(162)), (w2c(1), w(162)) MOL 1 14 EOUTVALENCE (x2c(1), x(192)), (w2c(1), w(196)) MOL 1 14 EOUTVALENCE (x2c(1), x(192)), (w2c(1), w(196)) MOL 1 14 EOUTVALENCE (x2c(1), x(198)), (w2c(1), w(263)) MOL 1 14 EOUTVALENCE (x3c(1), x(228)), (w3c(1), w(2c3)) MOL 1 14 EOUTVALENCE (x3c(1), x(228)), (w3c(1), w(2c3)) MOL 1 14 EOUTVALENCE (x3c(1), x(228)), (w3c(1), w(2c3)) MOL 1 14 EOUTVALENCE (x3c(1), x(272)), (w3c(1), w(2c3)) MOL 1 14 EOUTVALENCE (x3c(1), x(236)), (w3c(1), w(2c3)) MOL 1 14 EOUTVALENCE (x3c(1), x(3e2)), (w3c(1), w(3c2)) MOL 1 14 EOUTVALENCE (x3c(1), x(3e2)), (w3c(1), w(3c2)) MOL 1 15 EOUTVALENCE (x3c(1), x(3e2)), (w3c(1), w(3c2)) MOL 1 16 EOUTVALENCE (x3c(1), x(3e2)), (wa(1), w(4c2)) MOL 1 16 EOUTVALENCE (x3c(1), x(ac2)), (wa(1), w(ac2)) MOL 1 17 EOU	14	EQU	IVA	LEN	CECXI	25(1)	,xc	156)), ()	1250	1),	W(1	56))				MOL			125
14 EOUTVALENCE(X2(1), X(192)), (K27(1), K(182)) MOL 1 14 EOUTVALENCE(X2(1), X(196)), (K28(1), K(216)) MOL 1 14 EOUTVALENCE(X3(1), X(225)), (K3(1), K(225)) MOL 1 14 EOUTVALENCE(X3(1), X(226)), (K3(1), K(225)) MOL 1 14 EOUTVALENCE(X3(1), X(276)), (K3(1), K(225)) MOL 1 14 EOUTVALENCE(X3(1), X(276)), (K3(1), K(226)) MOL 1 14 EOUTVALENCE(X3(1), X(376)), (K3(1), K(224)) MOL 1 14 EOUTVALENCE(X3(1), X(376)), (K3(1), K(224)) MOL 1 14 EOUTVALENCE(X3(1), X(376)), (K3(1), K(3242)) MOL 1 14 EOUTVALENCE(X3(1), X(342), (K3(1), K(342)) MOL 1 14 EOUTVALENCE(X3(1), X(342), (K3(1), K(342)) MOL 1 14 EOUTVALENCE(X3(1), X(342), (K3(1), K(342)) MOL 1 14 EOUTVALENCE(X3(1), X(342), (K3(1), K(362)) MOL 1 14 EOUTVALENCE(X3(1), X(342), (K3(1), K(362)) MOL 1 14 EOUTVALENCE(X3(1), X(740))	14	EQU	IVA	LEN	CECX	26 (1)	X C	169)	1. (1	1260	1),	ALS	69))				MOL			126
14 FOULYALENCE (# 24 (1), * (196)), (* 24 (1), * (196)) MOL 1 14 EOULYALENCE (* 24 (1), * (240)), (* 34 (1), * (225)) MOL 1 14 EOULYALENCE (* 31 (1), * (240)), (* 34 (1), * (226)) MOL 1 14 EOULYALENCE (* 33 (1), * (240)), (* 34 (1), * (250)) MOL 1 14 EOULYALENCE (* 33 (1), * (240)), (* 34 (1), * (250)) MOL 1 14 EOULYALENCE (* 33 (1), * (240)), (* (* 34 (1), * (250)) MOL 1 14 EOULYALENCE (* 33 (1), * (342), (* 35 (1), * (360)) MOL 1 14 EOULYALENCE (* 33 (1), * (342), (* 43 (1), * (240)) MOL 1 14 EOULYALENCE (* 33 (1), * (342), (* * 35 (1), * (360)) MOL 1 14 EOULYALENCE (* 33 (1), * (342), (* * 35 (1), * (360)) MOL 1 14 EOULYALENCE (* 34 (1), * (342)), (* * 35 (1), * (360)) MOL 1 14 EOULYALENCE (* 34 (1), * (440)) MOL 1 14 EOULYALENCE (* 34 (1), * (440)) MOL 1 14 EOULYALENCE (* 34 (1), * (440)) MOL 1 14 EOULYALENCE (* 44 (1), * (440)) MOL 1 <td>14</td> <td>EDU</td> <td>IVA</td> <td>LEN</td> <td>CECX</td> <td>27(</td> <td>1)</td> <td>. × (</td> <td>(581</td> <td>), ()</td> <td>270</td> <td>1),</td> <td>WCS</td> <td>82</td> <td>))</td> <td></td> <td></td> <td></td> <td>MOL</td> <td></td> <td></td> <td>127</td>	14	EDU	IVA	LEN	CECX	27(1)	. × ((581), ()	270	1),	WCS	82))				MOL			127
14 EQUIVALENCE (F (2 (1), X(2 (3)), (H2 (1), W(2 (3))) MOL 1 14 EQUIVALENCE (T (3 (1), X(2 (2 (3)), (H (3 (1), W(2 (3 (3)))) MOL 1 14 EQUIVALENCE (T (3 (1), X(2 (2 (3)), (H (3 (1), W(2 (3 (3)))) MOL 1 14 EQUIVALENCE (T (3 (1), X(2 (2 (3)), (H (3 (1), W(2 (3 (3)))) MOL 1 14 EQUIVALENCE (T (3 (1), X(2 (2 (3)), (H (3 (1), W(2 (3 (3)))) MOL 1 14 EQUIVALENCE (T (3 (1), X(3 (3 (2)), (H (3 (1), W(2 (3 (3)))) MOL 1 14 EQUIVALENCE (T (3 (1), X(3 (3 (3 ()), (H (3 (1), W(2 (3 ())))) MOL 1 14 EQUIVALENCE (T (3 (1), X(3 (3 (3 ()), (H (3 (1), W(2 (2 ())))) MOL 1 14 EQUIVALENCE (T (3 (1), X(1 (3 (2 ()), (H (4 (2 ()))))) MOL 1 14 EQUIVALENCE (T (3 (1), X(1 (3 (0)), (H (4 (2 ()))))) MOL 1 14 EQUIVALENCE (T (3 (1), X(1 (3 ()), (H (3 ()), W(4 (2 ()))))) MOL 1 14 EQUIVALENCE (T (3 (1), X(1 (3 (0)), (H (3 (0))))))))))))))))))))))))))))))))))	14	EQU	IVA	LENC	CECX	PR(1)	XC.	196)), (*	280	11.	WCS	96))				MOL			128
14 EQUIVALEFCE(X3)(1),X(243),(*3)(1),K(243)) MOL 1 14 FOULVALEFNCE(X3)(1),X(243),(*3)(1),K(243)) MOL 1 14 FOULVALEFNCE(X3)(1),X(243),(*3)(1),K(223)) MOL 1 14 FOULVALEFNCE(X3)(1),X(243),(*3)(1),K(236)) MOL 1 14 FOULVALEFNCE(X3)(1),X(243),(*3)(1),K(236)) MOL 1 14 EQUIVALEFNCE(X3)(1),X(340),(*3)(1),K(360) MOL 1 14 EQUIVALEFNCE(X3)(1),X(342),(*3)(1),K(360) MOL 1 14 EQUIVALEFNCE(X3)(1),X(342),(*3)(1),K(380) MOL 1 14 EQUIVALEFNCE(X3)(1),X(342),(*43)(1),K(380) MOL 1 14 EQUIVALEFNCE(X3)(1),X(342),(*40)(1),K(4380) MOL 1 14 EQUIVALEFNCE(X3)(1),X(342),(*40)(1),K(4380) MOL 1 14 EQUIVALEFNCE(X3)(1),X(442),(*40)(1),K(441) MOL 1 14 EQUIVALEFNCE(X43)(1),X(442),(*441) MOL 1 14 EQUIVALEFNCE(X43)(1),X(462),(*44(1),K(523)) MOL 1 14 EQUIVALEFNCE(X43)(1),X(523),(*44(1),K(523)) MOL </td <td>14</td> <td>EQU</td> <td>IVA</td> <td>LENG</td> <td>CFCX</td> <td>291</td> <td>1)</td> <td>, X (</td> <td>(915</td> <td>), ()</td> <td>1290</td> <td>1).</td> <td>WCa</td> <td>10</td> <td>))</td> <td></td> <td></td> <td></td> <td>MOL</td> <td></td> <td></td> <td>129</td>	14	EQU	IVA	LENG	CFCX	291	1)	, X ((915), ()	1290	1).	WCa	10))				MOL			129
14 EQUIVALENCE(VASCI), X(2400), (*3(1), V(256)) MOL 1 14 EQUIVALENCE(X33(1), X(270), (*33(1), V(256)) MOL 1 14 EQUIVALENCE(X33(1), X(270), (*33(1), V(256)) MOL 1 14 EQUIVALENCE(X33(1), X(270), (*33(1), V(256)) MOL 1 14 EQUIVALENCE(X33(1), X(340), (*35(1), *(366)) MOL 1 14 EQUIVALENCE(X36(1), X(342), (*36(1), *(360)) MOL 1 14 EQUIVALENCE(X36(1), X(342), (*37(1), *(360)) MOL 1 14 EQUIVALENCE(X36(1), X(340), (*37(1), *(360)) MOL 1 14 EQUIVALENCE(X36(1), X(340), (*30(1), *(430)) MOL 1 14 EQUIVALENCE(X40(1), X(340), (*43(1), *(422)) MOL 1 14 EQUIVALENCE(X40(1), X(440), (*40(1), *(420)) MOL 1 14 EQUIVALENCE(X40(1), X(420), (*40(1), *(420)) MOL 1 14 EQUIVALENCE(X40(1), X(520), (*41(1), *(420)) MOL 1 14 EQUIVALENCE(X40(1), X(520), (*43(1), *(462)) MOL 1 14 EQUIVALENCE(X40(1), X(520), (14	EQU	IVA	LENG	CECX	30(1)	XC.	225)), ()	-380	1),	4(2	25))				MOL			130
14 F0/IVALFRCE(X32(1),X(272),(W32(1),W(272)) MOL 1 14 F0/IVALENCE(X33(1),X(272),(W35(1),W(272)) MOL 1 14 F0/IVALENCE(X33(1),X(272),(W35(1),W(272)) MOL 1 14 F0/IVALENCE(X35(1),X(230),(W35(1),W(230)) MOL 1 14 F0/IVALENCE(X35(1),X(332),(W37(1),W(322)) MOL 1 14 F0/IVALENCE(X36(1),X(332),(W37(1),W(322)) MOL 1 14 F0/IVALENCE(X37(1),X(332),(W37(1),W(3361)) MOL 1 14 F0/IVALENCE(X37(1),X(342),(W37(1),W(3361)) MOL 1 14 F0/IVALENCE(X37(1),X(342),(W37(1),W(3361)) MOL 1 14 F0/IVALENCE(X37(1),X(420),(W37(1),W(4361)) MOL 1 14 F0/IVALENCE(X37(1),X(442)),(W42(1),W(4360)) MOL 1 14 F0/IVALENCE(X40(1),X(540)),(W42(1),W(480)) MOL 1 14 F0/IVALENCE(X40(1),X(540)),(W42(1),W(550)) MOL 1 14 F0/IVALENCE(X40(1),X(540)),(W42(1),W(550)) MOL 1 14 F0/IVALENCE(X40(1),X(540)),(W42(1),W(550)) MOL 1 14 F0/IVALENCE(X53(1),X(540)),(W55(1),W(14	EQU	IVA	LEN	CE (X)	31(1)	,xt.	240)),(,	310	:1),	W(a	248))				MOL			131
14 EQUIVALENCE(X33(1),X(Z72)),("33(1),"(272)) MOL 1 14 FQUIVALENCE(X33(1),X(Z72)),("35(1),"(280)) MOL 1 14 FQUIVALENCE(X35(1),X(Z86)),("35(1),"(360)) MOL 1 14 FQUIVALENCE(X35(1),X(Z86)),("35(1),"(320)) MOL 1 14 FQUIVALENCE(X35(1),X(Z86)),("35(1),"(320)) MOL 1 14 EQUIVALENCE(X36(1),X(Z86)),("35(1),"(330)) MOL 1 14 EQUIVALENCE(X36(1),X(Z86)),("43(1),"(340)) MOL 1 14 EQUIVALENCE(X36(1),X(Z480)),("43(1),"(480)) MOL 1 14 EQUIVALENCE(X42(1),X(440)),("44(1),"(422)) MOL 1 14 EQUIVALENCE(X42(1),X(440)),("44(1),"(480)) MOL 1 14 EQUIVALENCE(X44(1),X(440)),("44(1),"(480)) MOL 1 14 EQUIVALENCE(X44(1),X(576)),("46(1),"(526)) MOL 1 14 EQUIVALENCE(X44(1),X(576)),("46(1),"(526)) MOL 1 14 EQUIVALENCE(X44(1),X(576)),("46(1),"(526)) MOL 1 14 EQUIVALENCE(X45(1),X(772)),("55(1),"(772)) MOL 1 14 EQUIVALENCE(X53(1),X(772)),("55	14	FOI	IVA	LENC	CE(X)	158	1)	. X (256)), ()	320	1),	WCa	256))				MOL			135
14 FOUTVALENCE(X3a(1),X(289)),(H34(1),H(289)) MOL 1 14 FOUTVALENCE(X3a(1),X(34)),(H35(1),H(342)) MOL 1 14 FOUTVALENCE(X36(1),X(342)),(H37(1),H(342)) MOL 1 14 FOUTVALENCE(X42(1),X(428)),(H37(1),H(342)) MOL 1 14 FOUTVALENCE(X42(1),X(4428)),(H44(1),H(442)) MOL 1 14 FOUTVALENCE(X42(1),X(542)),(H46(1),H(543)) MOL 1 14 FOUTVALENCE(X46(1),X(529),(H46(1),H(553)) MOL 1 14 FOUTVALENCE(X42(1),X(576)),(H46(1),H(552)) MOL 1 14 FOUTVALENCE(X53(1),X(576)),(H55(1),H(756)) MOL 1 14 FOUTVALENCE(X53(1),X(729)),(H55(1),H(756)) MOL 1 14 FOUTVALENCE(X53(1),X(729)),(H55(14	EQU	IVA	LEN	CE(X.	33(1)	,XC	1275),(*	33(1),	WCa	272))				MOL			133
14 FQUIVALENCE(X35(1),X(336)),(M35(1),M(320)) MOL 1 14 FQUIVALENCE(X35(1),X(336)),(M37(1),M(320)) MOL 1 14 FQUIVALENCE(X37(1),X(340)),(M37(1),M(342)) MOL 1 14 FQUIVALENCE(X37(1),X(340)),(M37(1),M(342)) MOL 1 14 FQUIVALENCE(X37(1),X(340)),(M37(1),M(340)) MOL 1 14 FQUIVALENCE(X36(1),X(340)),(M37(1),M(340)) MOL 1 14 FQUIVALENCE(X36(1),X(340)),(M43(1),M(340)) MOL 1 14 FQUIVALENCE(X42(1),X(340)),(M42(1),M(340)) MOL 1 14 FQUIVALENCE(X42(1),X(340)),(M42(1),M(340)) MOL 1 14 FQUIVALENCE(X42(1),X(340)),(M42(1),M(340)) MOL 1 14 FQUIVALENCE(X42(1),X(340)),(M42(1),M(340)) MOL 1 14 FQUIVALENCE(X42(1),X(356)),(M45(1),M(550)) MOL 1 14 FQUIVALENCE(X42(1),X(552)),(M45(1),M(552)) MOL 1 14 FQUIVALENCE(X45(1),X(560)),(M51(1),M(552)) MOL 1 14 FQUIVALENCE(X52(1),X(560)),(M51(1),M(560)) <	14	EQU	IVA	LENO	CECX	34(1)	, X ((9.95	>,()	34(11).	W(2	289))				MOL			134
14 EDUIVALENCE(X36(1),X(342)),(W36(1),W(324)) MOL 1 14 EDUIVALENCE(X36(1),X(342)),(W36(1),W(360)) MOL 1 14 EDUIVALENCE(X36(1),X(340)),(W39(1),W(380)) MOL 1 14 EDUIVALENCE(X36(1),X(340)),(W39(1),W(380)) MOL 1 14 EDUIVALENCE(X36(1),X(420)),(W41(1),W(420)) MOL 1 14 EDUIVALENCE(X41(1),X(420)),(W41(1),W(420)) MOL 1 14 EDUIVALENCE(X43(1),X(440)),(W44(1),W(462)) MOL 1 14 EDUIVALENCE(X43(1),X(462)),(W44(1),W(462)) MOL 1 14 EDUIVALENCE(X43(1),X(520)),(W44(1),W(520)) MOL 1 14 EDUIVALENCE(X46(1),X(520)),(W44(1),W(520)) MOL 1 14 EDUIVALENCE(X46(1),X(520)),(W45(1),W(576)) MOL 1 14 EDUIVALENCE(X46(1),X(742)),(W576)) MOL 1 14 EDUIVALENCE(X55(1),X(772)),(W57(1),W(655)) MOL 1 14 EDUIVALENCE(X55(1),X(772)),(W55(1),W(776)) MOL 1 14 EDUIVALENCE(X55(1),X(772)),(W55(1),W(776)) MOL 1 14 EDUIVALENCE(X55(1),X(776)),(W55(1),W(776	14	EQU	IVA	LEN	CE(X)	35(1)	, X (396)	1, ()	1350	1),	W(]	506))				MOL			135
14 EQUIVALENCE(X37(1),X(342)),(M37(1),M(342)) MCL 1 14 EQUIVALENCE(X30(1),X(1PM)),(M37(1),M(4780)) MOL 1 14 EQUIVALENCE(X30(1),X(1PM)),(M37(1),M(4780)) MOL 1 14 EQUIVALENCE(X30(1),X(1PM)),(M470)) MOL 1 14 EQUIVALENCE(X30(1),X(420)),(M41(1),M(4780)) MOL 1 14 EQUIVALENCE(X30(1),X(420)),(M41(1),M(4240)) MOL 1 14 EQUIVALENCE(X30(1),X(420)),(M41(1),M(420)) MOL 1 14 EQUIVALENCE(X40(1),X(404)),(M42(1),M(480)) MOL 1 14 EQUIVALENCE(X40(1),X(529)),(M44(1),M(520)) MOL 1 14 EQUIVALENCE(X40(1),X(529)),(M44(1),M(552)) MOL 1 14 EQUIVALENCE(X40(1),X(552)),(M47(1),M(552)) MOL 1 14 EQUIVALENCE(X40(1),X(502)),(M46(1),M(563)) MOL 1 14 EQUIVALENCE(X5(1),X(772)),(K52(1),M(673)) MOL 1 14 EQUIVALENCE(X53(1),X(772)),(K53(1),M(772)) MOL 1 14 EQUIVALENCE(X53(1),X(773)),(K53(1),M(772)) MOL 1 14 EQUIVALENCE(X53(1),X(743)),(K53(1),M(14	EQU	IVA	LEN	CECX.	36(1)	,×C	342)	3.14	360	1),	W(1	324))				MOL			136
14 EDUIVALENCE(X35(1),X(561)),(K38(1),M(360)) MOL 1 14 EDUIVALENCE(X37(1),X(361)),(K38(1),M(360)) MOL 1 14 EDUIVALENCE(X47(1),X(420)),(K40(1),M(420)) MOL 1 14 EDUIVALENCE(X41(1),X(420)),(K41(1),M(420)) MOL 1 14 EDUIVALENCE(X41(1),X(420)),(K41(1),M(420)) MOL 1 14 EDUIVALENCE(X41(1),X(420)),(K44(1),M(462)) MOL 1 14 EDUIVALENCE(X41(1),X(420)),(K44(1),M(462)) MOL 1 14 EDUIVALENCE(X41(1),X(520)),(K43(1),M(520)) MOL 1 14 EDUIVALENCE(X41(1),X(520)),(K44(1),M(570)) MOL 1 14 EDUIVALENCE(X41(1),X(520)),(K44(1),M(570)) MOL 1 14 EDUIVALENCE(X41(1),X(500)),(K49(1),M(570)) MOL 1 14 EDUIVALENCE(X41(1),X(760)),(K52(1),M(760)) MOL 1 14 EDUIVALENCE(X41(1),X(772)),(K53(1),M(7670)) MOL 1 14 EDUIVALENCE(X53(1),X(772)),(K53(1),M(772)) MOL 1 14 EDUIVALENCE(X53(1),X(772)),(K53(1),M(7670)) MOL 1 14 EDUIVALENCE(X53(1),X(760)),(K5	14	EQU	IVA	LEN	CETX	37(1)	,XC	342)	2.50	37 (1),	W(\$42))				MOL			137
14 EQUIVALENCE(XSQ(1), X(3A^3), (M3Q(1), M(3A0)) MOL 1 14 EQUIVALENCE(XAQ(1), X(4A0), (M3Q(1), M(4A0)) MOL 1 14 EQUIVALENCE(XAQ(1), X(4A1)), (M4Q(1), M(4A2)) MOL 1 14 EQUIVALENCE(XAQ(1), X(4A1)), (M4Q(1), M(4A2)) MOL 1 14 EQUIVALENCE(XAQ(1), X(4A2)), (M4Q(1), M(4A2)) MOL 1 14 EQUIVALENCE(XAQ(1), X(5A2)), (M4Q(1), M(5A2)) MOL 1 14 EQUIVALENCE(XAQ(1), X(520)), (M4Q(1), M(5A2)) MOL 1 14 EQUIVALENCE(XAG(1), X(520)), (M4Q(1), M(576)) MOL 1 14 EQUIVALENCE(XAG(1), X(530)), (M4Q(1), M(576)) MOL 1 14 EQUIVALENCE(XAG(1), X(550)), (M4Q(1), M(576)) MOL 1 14 EQUIVALENCE(XSQ(1), X(650)), (M5(1), M(670)) MOL 1 14 EQUIVALENCE(XSQ(1), X(723), (M53(1), M(723)) MOL 1 14 EQUIVALENCE(XSQ(1), X(723), (M53(1), M(723)) MOL 1 14 EQUIVALENCE(XSQ(1), X(723), (M53(1), M(723)) MOL 1 14 EQUIVALENCE(XSQ(1), X(743), (M56(1), M(723)) MOL 1 14	14	EDU	IVA	LENI	CECX	38(1)	, X (361)), ()	38 (1),	WC3	61))				MOL			138
14 EQUIVALENCE(XuP(1), X(UAP), (WUP(1), W(UP)) MOL 1 14 EQUIVALENCE(XuP(1), X(UP), (WUP(1), W(UP)) MOL 1 14 EQUIVALENCE(XuP(1), X(UP), (WUP(1), W(UP)) MOL 1 14 EQUIVALENCE(XuP(1), X(UP)) (WUP(1), W(UP)) MOL 1 14 EQUIVALENCE(XuP(1), X(UP)) MUP(1) MOL 1 14 EQUIVALENCE(XuP(1), X(UP)) MUP(1) MUP(1) 1 14 EQUIVALENCE(XuP(1), X(UP)) MUP(1) 1 1 1 14 EQUIVALENCE(XuP(1), X(UP)) MUP(1) 1 1	14	EQU	IVA	LEN	CECX	39(1)	,xt	364)), ()	1390	1),	MC3	880))				MOL			139
14 EQUIVALENCE(xa(1), x(220), (w41(1), w(424)) MOL 1 14 FOUIVALENCE(xa(1), x(462), (w43(1), w(462)) MOL 1 14 EQUIVALENCE(xa(1), x(462), (w43(1), w(462)) MOL 1 14 EQUIVALENCE(xa(1), x(462), (w43(1), w(462)) MOL 1 14 EQUIVALENCE(xa(1), x(520), (w43(1), w(520)) MOL 1 14 EQUIVALENCE(xa(1), x(520), (w43(1), w(576)) MOL 1 14 EQUIVALENCE(xa(1), x(576), (w47(1), w(576)) MOL 1 14 EQUIVALENCE(xa(1), x(576), (w57(1), w(676)) MOL 1 14 EQUIVALENCE(xa(1), x(772), (w53(1), w(772)) MOL 1 14 EQUIVALENCE(xa(1), x(772), (w53(1), w(772)) MOL 1 14 EQUIVALENCE(xa(1), x(743), (w56(1), w(780)) MOL 1 14 EQUIVALENCE(xa(1), x(743), (w56(1), w(780)) MOL 1 14 EQUIVALENCE(xa(1)	14	EQU	IVA	LEN	CFIX	496	1)	, X (498)),()	400	(1),	w(4	100))				MOL			140
14 F0JIVALENCE(X42(1),X(441)),(W42(1),W(441)) MOL 1 14 EQUIVALENCE(X43(1),Y(4A41),(W44(1),W(462)) MOL 1 14 EQUIVALENCE(X43(1),Y(4A41),(W44(1),W(484)) MOL 1 14 EQUIVALENCE(X43(1),Y(4A41),(W44(1),W(503)) MOL 1 14 EQUIVALENCE(X43(1),Y(520),(W44(1),W(503)) MOL 1 14 EQUIVALENCE(X44(1),X(520),(W44(1),W(552)) MOL 1 14 EQUIVALENCE(X44(1),X(508),(W44(1),W(552)) MOL 1 14 EQUIVALENCE(X44(1),X(560),(W44(1),W(563)) MOL 1 14 EQUIVALENCE(X44(1),X(560),(W51(1),W(576)) MOL 1 14 EQUIVALENCE(X53(1),X(765),(W52(1),W(676)) MOL 1 14 EQUIVALENCE(X53(1),X(772),(K53(1),W(720)) MOL 1 14 EQUIVALENCE(X55(1),X(776),(W55(1),W(780)) MOL 1 14 EQUIVALENCE(X53(1),X(743),(W56(1),W(780)) MOL 1 14 EQUIVALENCE(X53(1),X(780),(W56(1),W(780)) MOL 1 14 EQUIVALENCE(X53(1),X(780),(W56(1),W(780)) MOL 1 14 EQUIVALENCE(X53(1),X(780),(W56(1),W(780)) </td <td>:4</td> <td>EQU</td> <td>IVA</td> <td>LEN</td> <td>CECX</td> <td>41(</td> <td>1)</td> <td>, X (</td> <td>420)</td> <td>),()</td> <td>410</td> <td>(1),</td> <td>W(</td> <td>154</td> <td>))</td> <td></td> <td></td> <td></td> <td>MOL</td> <td></td> <td></td> <td>141</td>	:4	EQU	IVA	LEN	CECX	41(1)	, X (420)),()	410	(1),	W(154))				MOL			141
14 EQUIVALENCE(Ya3(1),X(462)),(W43(1),W(462)) MOL 1 14 EQUIVALENCE(Ya5(1),X(526)),(W43(1),W(506)) MOL 1 14 EQUIVALENCE(Ya5(1),X(526)),(W43(1),W(576)) MOL 1 14 EQUIVALENCE(Ya5(1),X(527)),(W46(1),W(576)) MOL 1 14 EQUIVALENCE(Xa6(1),X(527)),(W46(1),W(576)) MOL 1 14 EQUIVALENCE(Xa6(1),X(576)),(W48(1),W(576)) MOL 1 14 EQUIVALENCE(Xa6(1),X(652)),(W57(1),W(676)) MOL 1 14 EQUIVALENCE(X53(1),X(672)),(W53(1),W(676)) MOL 1 14 EQUIVALENCE(X53(1),X(772)),(W53(1),W(762)) MOL 1 14 EQUIVALENCE(X53(1),X(772)),(W53(1),W(762)) MOL 1 14 EQUIVALENCE(X53(1),X(772)),(W53(1),W(762)) MOL 1 14 EQUIVALENCE(X56(1),X(784)),(W53(1),W(784)) MOL 1 14 EQUIVALENCE(X56(1),X(784)),(W53(1),W(784)) MOL 1 14 EQUIVALENCE(X56(1),X(784)),(W53(1),W(784)) MOL 1 14 EQUIVALENCE(X56(1),X(784)),(W56(1),W(784)) MOL 1 14 EQUIVALENCE(X56(1),X(784)),(W67(14	FQU	IVA	LEN	CE(X	45:	1)	, X (441)),()	442((1),	W((141))				MOL			142
14 EQUIVALENCE(XAG(1),Y(4AG),(W44(1),W(48G)) MOL 1 14 EQUIVALENCE(XAG(1),X(52G)),(W45(1),W(55G)) MOL 1 14 EQUIVALENCE(XAG(1),X(52G)),(W47(1),W(55G)) MOL 1 14 EQUIVALENCE(XAG(1),X(52G)),(W47(1),W(55G)) MOL 1 14 EQUIVALENCE(XAG(1),X(52G)),(W47(1),W(55G)) MOL 1 14 EQUIVALENCE(XAG(1),X(60B)),(W49(1),W(65G)) MOL 1 14 EQUIVALENCE(X53(1),X(65D)),(W57(1),W(65G)) MOL 1 14 EQUIVALENCE(X53(1),X(772)),(W53(1),W(729)) MOL 1 14 EQUIVALENCE(X53(1),X(772),(W53(1),W(729)) MOL 1 14 EQUIVALENCE(X53(1),X(772),(W53(1),W(729)) MOL 1 14 EQUIVALENCE(X53(1),X(772),(W53(1),W(729)) MOL 1 14 EQUIVALENCE(X53(1),X(776),(W55(1),W(729)) MOL 1 14 EQUIVALENCE(X53(1),X(776),(W55(1),W(729)) MOL 1 14 EQUIVALENCE(X53(1),X(760),(W56(1),W(729)) MOL 1 14 EQUIVALENCE(X53(1),X(730)),(W56(1),W(720)) MOL 1 14 EQUIVALENCE(X56(1),X(740)),(W58(1),W(64	14	EQU	IVA	LEN	CECX	43(1)	, X (452)),()	430	(1),	wea	165))				MOL			143
14 ECUIVALENCE(X45(1),X(526)),(W45(1),W(529)) MOL 1 14 ECUIVALENCE(X45(1),X(529)),(W46(1),W(529)) MOL 1 14 ECUIVALENCE(X47(1),X(529)),(W47(1),W(5752)) MOL 1 14 ECUIVALENCE(X47(1),X(576)),(W47(1),W(5752)) MOL 1 14 ECUIVALENCE(X47(1),X(576)),(W47(1),W(576)) MOL 1 14 ECUIVALENCE(X51(1),X(576)),(W50(1),W(576)) MOL 1 14 ECUIVALENCE(X51(1),X(772)),(W51(1),W(762)) MOL 1 14 ECUIVALENCE(X53(1),X(772)),(W52(1),W(7702)) MOL 1 14 ECUIVALENCE(X53(1),X(772)),(W52(1),W(7702)) MOL 1 14 ECUIVALENCE(X53(1),X(772)),(W55(1),W(7762)) MOL 1 14 ECUIVALENCE(X53(1),X(772)),(W55(1),W(7762)) MOL 1 14 ECUIVALENCE(X53(1),X(772)),(W55(1),W(7762)) MOL 1 14 ECUIVALENCE(X53(1),X(743)),(W56(1),W(784)) MOL 1 14 ECUIVALENCE(X57(1),X(812)),(W57(1),W(784)) MOL 1 14 ECUIVALENCE(X57(1),X(870)),(W53(1),W(7930)) MOL 1 14 ECUIVALENCE(X57(1),X(970	14	EQU	IVA	LEN	CE(X)	44(1)	, Y (484)),()	44((1),	WC	184))		÷.		MOL			144
14 EGUIVALENCE(Va6(1), X(529)) (W47(1), W(552)) MOL 1 14 EGUIVALENCE(Va6(1), X(552)), (W47(1), W(552)) MOL 1 14 EGUIVALENCE(Xa9(1), X(552)), (W47(1), W(576)) MOL 1 14 EGUIVALENCE(Xa9(1), X(650)), (W47(1), W(6576)) MOL 1 14 EGUIVALENCE(Xa9(1), X(650)), (W57(1), W(6576)) MOL 1 14 EGUIVALENCE(X53(1), X(676)), (W57(1), W(6576)) MOL 1 14 EGUIVALENCE(X53(1), X(772)), (W52(1), W(772)) MOL 1 14 EGUIVALENCE(X53(1), X(772)), (W55(1), W(772)) MOL 1 14 EGUIVALENCE(X55(1), X(772)), (W55(1), W(772)) MOL 1 14 EGUIVALENCE(X55(1), X(774)), (W55(1), W(774)) MOL 1 14 EGUIVALENCE(X56(1), X(784)), (W57(1), W(720)) MOL 1 14 EGUIVALENCE(X56(1), X(784)), (W55(1), W(720)) MOL 1 14 EGUIVALENCE(X56(1), X(784)), (W56(1), W(784)) MOL 1 14 EGUIVALENCE(X56(1), X(784)), (W56(1), W(780)) MOL 1 14 EGUIVALENCE(X56(1), X(940), (W56(1), W(970)) MOL 1 14 </td <td>14</td> <td>EGU</td> <td>IVA</td> <td>LEN</td> <td>CECX</td> <td>45(</td> <td>1)</td> <td>, X (</td> <td>526)</td> <td>),()</td> <td>445 (</td> <td>(1),</td> <td>M(</td> <td>500</td> <td>))</td> <td></td> <td></td> <td></td> <td>- MOL</td> <td></td> <td></td> <td>145</td>	14	EGU	IVA	LEN	CECX	45(1)	, X (526)),()	445 ((1),	M(500))				- MOL			145
14 EQUIVALENCE(X47(1),X(552)), (W47(1),W(552)) MCL 1 14 EQUIVALENCE(X47(1),X(576)), (W48(1),W(576)) MOL 1 14 EQUIVALENCE(X47(1),X(576)), (W48(1),W(576)) MOL 1 14 EQUIVALENCE(X47(1),X(576)), (W49(1),W(576)) MOL 1 14 EQUIVALENCE(X50(1),X(570)), (W50(1),W(570)) MOL 1 14 EQUIVALENCE(X51(1),X(772)), (W51(1),W(702)) MOL 1 14 EQUIVALENCE(X51(1),X(772)), (W52(1),W(772)) MOL 1 14 EQUIVALENCE(X51(1),X(772)), (W52(1),W(772)) MOL 1 14 EQUIVALENCE(X51(1),X(774)), (W52(1),W(784)) MOL 1 14 EQUIVALENCE(X51(1),X(774)), (W56(1),W(784)) MOL 1 14 EQUIVALENCE(X51(1),X(774)), (W56(1),W(784)) MOL 1 14 EQUIVALENCE(X51),X(744)), (W57(1),W(812)) MOL 1 14 EQUIVALENCE(X60(1),X(740)), (W59(1),W(870)) MOL 1 14 EQUIVALENCE(X60(1),X(1970)), (W63(1),W(970)) MOL 1 14 EQUIVALENCE(X60(1),X(1970)), (W62(1),W(970)) MOL 1 14 EQUIVALENCE(X60(1	14	EGU	IVA	LENI	CE(X	46(1)	, X (529)),()	4460	(1),	w(!	529))				MOL			146
14 EQUIVALENCE(x49(1), X(576)), (*48(1), W(600)) MOL 1 14 EQUIVALENCE(x49(1), X(630)), (*49(1), W(600)) MOL 1 14 EQUIVALENCE(x51(1), X(650)), (*51(1), W(650)) MOL 1 14 EQUIVALENCE(x51(1), X(6750)), (*52(1), W(650)) MOL 1 14 EQUIVALENCE(x53(1), X(7650), (*52(1), W(760)) MOL 1 14 EQUIVALENCE(x53(1), X(7729), (*53(1), W(7760)) MOL 1 14 EQUIVALENCE(x55(1), X(7750), (*55(1), W(7760)) MOL 1 14 EQUIVALENCE(x55(1), X(7750), (*55(1), W(7760)) MOL 1 14 EQUIVALENCE(x55(1), X(7750), (*55(1), W(7760)) MOL 1 14 EQUIVALENCE(x55(1), X(7740), (*55(1), W(7840)) MOL 1 14 EQUIVALENCE(x55(1), X(7760), (*57(1), W(7840)) MOL 1 14 EQUIVALENCE(x53(1), X(670), (*59(1), W(780)) MOL 1 14 EQUIVALENCE(x53(1), X(970), (*59(1), W(780)) MOL 1 14 EQUIVALENCE(x63(1), X(970), (*63(1), W(970)) MOL 1 14 EQUIVALENCE(x63(1), X(1974)), (*62(1), W(970)) MOL 1	14	EDU	IVA	LENI	CECX	47(1)	,XC	552)),()	4470	(1),	W(!	552	"				MOL			107
14 EGUIVALENCE(X49(1),X(602)),(K49(1),W(600)) MOL 1 14 EGUIVALENCE(X59(1),X(650)),(K59(1),W(650)) MOL 1 14 EGUIVALENCE(X51(1),X(650)),(K51(1),W(650)) MOL 1 14 EGUIVALENCE(X51(1),X(650)),(K51(1),W(670)) MOL 1 14 EGUIVALENCE(X53(1),X(720)),(K53(1),W(720)) MOL 1 14 EGUIVALENCE(X53(1),X(7720)),(K53(1),W(720)) MOL 1 14 EGUIVALENCE(X53(1),X(7720)),(K53(1),W(720)) MOL 1 14 EGUIVALENCE(X53(1),X(7720)),(K53(1),W(7720)) MOL 1 14 EGUIVALENCE(X53(1),X(7740)),(K53(1),W(7740)) MOL 1 14 EGUIVALENCE(X53(1),X(7740)),(K55(1),W(7740)) MOL 1 14 EGUIVALENCE(X53(1),X(7401)),(K58(1),W(7840)) MOL 1 14 EGUIVALENCE(X53(1),X(7401)),(K58(1),W(780)) MOL 1 14 EGUIVALENCE(X59(1),X(7930)),(K61(1),W(780)) MOL 1 14 EGUIVALENCE(X61(1),X(1930)),(K62(1),W(9030)) MOL 1 14 EGUIVALENCE(X64(1),X(1924)),(K62(1),W(1924)) MOL 1 14 EGUIVALENCE(X64(14	EQU	IVA	LENI	CECX	48(1)	, X (576)),()	480	(1),	W(576))				MOL			148
14 EQUIVALENCE(X50(1),X(625)),(H5P(1),H(625)) MOL 1 14 EQUIVALENCE(X51(1),X(676)),(H5P(1),H(625)) MOL 1 14 EQUIVALENCE(X52(1),X(676)),(H52(1),H(782)) MOL 1 14 EQUIVALENCE(X53(1),X(772)),(H53(1),H(782)) MOL 1 14 EQUIVALENCE(X53(1),X(772)),(H53(1),H(782)) MOL 1 14 EQUIVALENCE(X53(1),X(774)),(H53(1),H(784)) MOL 1 14 EQUIVALENCE(X55(1),X(774)),(H53(1),H(784)) MOL 1 14 EQUIVALENCE(X55(1),X(784)),(H53(1),H(784)) MOL 1 14 EQUIVALENCE(X56(1),X(784)),(H53(1),H(784)) MOL 1 14 EQUIVALENCE(X56(1),X(784)),(H53(1),H(784)) MOL 1 14 EQUIVALENCE(X56(1),X(784)),(H53(1),H(842)) MOL 1 14 EQUIVALENCE(X66(1),X(970)),(H60(1),H(970)) MOL 1 14 EQUIVALENCE(X64(1),X(1974)),(H62(1),H(980)) MOL 1 14 EQUIVALENCE(X64(1),X(1974)),(H62(1),H(980)) MOL 1 14 EQUIVALENCE(X64(1),X(1974)),(H62(1),H(1924)) MOL 1 14 EQUIVALENCE(X64(1),X(1974)),	14	EQU	IVA	LEN	CECX	49(1)	, × (636)),(;	490	(1),	W(6	.80))				MOL			149
14 EQUIVALENCE(X51(1),X(650)),(K51(1),W(650)) MOL 1 14 EQUIVALENCE(X52(1),X(676)),(K52(1),W(676)) MOL 1 14 EQUIVALENCE(X53(1),X(7723)),(K52(1),W(720)) MOL 1 14 EQUIVALENCE(X53(1),X(7723)),(K52(1),W(720)) MOL 1 14 EQUIVALENCE(X53(1),X(7723)),(K52(1),W(720)) MOL 1 14 EQUIVALENCE(X53(1),X(7756)),(W52(1),W(756)) MOL 1 14 EQUIVALENCE(X57(1),X(812)),(W57(1),W(841)) MOL 1 14 EQUIVALENCE(X57(1),X(812)),(W57(1),W(841)) MOL 1 14 EQUIVALENCE(X57(1),X(812)),(W57(1),W(841)) MOL 1 14 EQUIVALENCE(X57(1),X(870)),(W57(1),W(841)) MOL 1 14 EQUIVALENCE(X57(1),X(870)),(W57(1),W(841)) MOL 1 14 EQUIVALENCE(X57(1),X(870)),(W57(1),W(842)) MOL 1 14 EQUIVALENCE(X57(1),X(870)),(W57(1),W(980)) MOL 1 14 EQUIVALENCE(X51(1),X(970)),(W62(1),W(961)) MOL 1 14 EQUIVALENCE(X64(1),X(1024)),(W62(1),W(1024)) MOL 1 14 EQUIVALENCE(X86(1),X(1096)	14	EQU	IVA	LENI	CECX	50(1)	, X (625)	3, ()	1500	(1),	WCC	525))				MOL			150
14 EQUIVALENCE(XS2(1),X(676)),(W52(1),W(676)) MOL 1 14 EQUIVALENCE(XS3(1),X(772)),(W53(1),W(782)) MOL 1 14 EQUIVALENCE(XS3(1),X(772)),(W53(1),W(782)) MOL 1 14 EQUIVALENCE(XS3(1),X(772)),(W53(1),W(782)) MOL 1 14 EQUIVALENCE(XS3(1),X(772)),(W53(1),W(782)) MOL 1 14 EQUIVALENCE(XS5(1),X(774)),(W55(1),W(784)) MOL 1 14 EQUIVALENCE(XS5(1),X(784)),(W56(1),W(784)) MOL 1 14 EQUIVALENCE(XS5(1),X(784)),(W56(1),W(784)) MOL 1 14 EQUIVALENCE(XS5(1),X(784)),(W57(1),W(884)) MOL 1 14 EQUIVALENCE(XS6(1),X(784)),(W59(1),W(884)) MOL 1 14 EQUIVALENCE(XS6(1),X(784)),(W59(1),W(8980)) MOL 1 14 EQUIVALENCE(X64(1),X(970)),(W63(1),W(980)) MOL 1 14 EQUIVALENCE(X64(1),X(962)),(W63(1),W(980)) MOL 1 14 EQUIVALENCE(X64(1),X(1924)),(W63(1),W(1924)) MOL 1 14 EQUIVALENCE(X86(1),X(1960)),(W60(1),W(1024)) MOL 1 14 EQUIVALENCE(X86(1),X(1960))	14	EQU	IVA	LEN	CECX	510	1)	, X (650)	3, (4	510	1).	WCE	50					MOL			151
14 EQUIVALENCE(XS3(1),X(722)),(K53(1),W(722)) MOL 1 14 EQUIVALENCE(XS4(1),X(723)),(K53(1),W(722)) MOL 1 14 EQUIVALENCE(XS5(1),X(753)),(K53(1),W(723)) MOL 1 14 EQUIVALENCE(XS5(1),X(753)),(K55(1),W(723)) MOL 1 14 EQUIVALENCE(XS5(1),X(753)),(K55(1),W(723)) MOL 1 14 EQUIVALENCE(XS5(1),X(743)),(K56(1),W(784)) MOL 1 14 EQUIVALENCE(XS5(1),X(7612),(K57(1),W(812)) MOL 1 14 EQUIVALENCE(XS6(1),X(870)),(K57(1),W(812)) MOL 1 14 EQUIVALENCE(XS6(1),X(970)),(K57(1),W(812)) MOL 1 14 EQUIVALENCE(XS6(1),X(970)),(K53(1),W(970)) MOL 1 14 EQUIVALENCE(XS6(1),X(970)),(K53(1),W(970)) MOL 1 14 EQUIVALENCE(XS6(1),X(970)),(K63(1),W(970)) MOL 1 14 EQUIVALENCE(XS6(1),X(1024)),(K63(1),W(922)) MOL 1 14 EQUIVALENCE(XS6(1),X(1024)),(K63(1),W(1024)) MOL 1 14 EQUIVALENCE(XS6(1),X(1096)),(W60(1),W(1024)) MOL 1 14 EQUIVALENCE(XS6(1),X(1096))	14	EQU	AVI	LEN	CEIX	255	1)	, X (676)	3. (1	1520	1),	WCO	76		· · ·			MOL			152
14 EQUIVALENCE(X5G(1),X(7293),(W52(1),W(7293)) MOL 1 14 EQUIVALENCE(X5G(1),X(7563),(W55(1),W(7293)) MOL 1 14 EQUIVALENCE(X5G(1),X(7843),(W55(1),W(7843)) MOL 1 14 EQUIVALENCE(X5G(1),X(7843),(W57(1),W(843)) MOL 1 14 EQUIVALENCE(X5G(1),X(7843),(W57(1),W(841)) MOL 1 14 EQUIVALENCE(X5G(1),X(8412),(W57(1),W(841)) MOL 1 14 EQUIVALENCE(X5G(1),X(8412),(W57(1),W(841)) MOL 1 14 EQUIVALENCE(X5G(1),X(9703)),(W67(1),W(8410)) MOL 1 14 EQUIVALENCE(X60(1),X(9703)),(W60(1),W(900)) MOL 1 14 EQUIVALENCE(X60(1),X(9703)),(W60(1),W(900)) MOL 1 14 EQUIVALENCE(X60(1),X(1020)),(W62(1),W(900)) MOL 1 14 EQUIVALENCE(X64(1),X(1024)),(W62(1),W(1024)) MOL 1 14 EQUIVALENCE(X64(1),X(1024)),(W62(1),W(1024)) MOL 1 14 EQUIVALENCE(X64(1),X(1096)),(W60(1),W(1024)) MOL 1 14 EQUIVALENCE(X64(1),X(1096)),(W60(1),W(1024)) MOL 1 14 EQUIVALENCE(X64(14	EQU	IVA	LENG	CECX	530	17	, × (1953	3,0	530	1),	WCT	105					MOL			153
14 ENDIVALENCE(X55(1),X(756)),(M55(1),M(756)) MOL 1 14 EQUIVALENCE(X55(1),X(763)),(M55(1),M(784)) MOL 1 14 EQUIVALENCE(X57(1),X(812)),(M56(1),M(843)) MOL 1 14 EQUIVALENCE(X57(1),X(812)),(M57(1),M(812)) MOL 1 14 EQUIVALENCE(X57(1),X(812)),(M57(1),M(812)) MOL 1 14 EQUIVALENCE(X57(1),X(870)),(M57(1),M(870)) MOL 1 14 EQUIVALENCE(X57(1),X(870)),(M57(1),M(870)) MOL 1 14 EQUIVALENCE(X60(1),X(970)),(M57(1),M(970)) MOL 1 14 EQUIVALENCE(X60(1),X(970)),(M61(1),M(970)) MOL 1 14 EQUIVALENCE(X61),X(970)),(M62(1),M(961)) MOL 1 14 EQUIVALENCE(X64(1),X(1024)),(M62(1),M(1024)) MOL 1 14 EQUIVALENCE(X80(1),X(1096)),(M60(1),M(1024)) MOL 1 14 EQUIVALENCE(X80(1),X(1096)),(M60(1),M(1024)) MOL 1 14 EQUIVALENCE(X80(1),X(1096)),(M60(1),M(1024)) MOL 1 14 EQUIVALENCE(X80(1),X(1096)),(M60(1),M(1024)) MOL 1 14 EQUIVALENCE(X80(1),X(109	14	EQU	IVA	LENI	CEIX	54(12	, × (729)),()	1540	1),	WC	154	"				MOL			154
14 EQUIVALENCE(X5A(1),X(784)),(W56(1),W(784)) MCL 1 14 EQUIVALENCE(X57(1),X(812)),(W57(1),W(812)) MOL 1 14 EQUIVALENCE(X57(1),X(812)),(W57(1),W(812)) MOL 1 14 EQUIVALENCE(X57(1),X(870)),(W59(1),W(870)) MOL 1 14 EQUIVALENCE(X59(1),X(870)),(W59(1),W(870)) MOL 1 14 EQUIVALENCE(X60(1),X(970)),(W69(1),W(870)) MOL 1 14 EQUIVALENCE(X60(1),X(970)),(W69(1),W(980)) MOL 1 14 EQUIVALENCE(X61),X(970)),(W62(1),W(980)) MOL 1 14 EQUIVALENCE(X62(1),X(970)),(W63(1),W(980)) MOL 1 14 EQUIVALENCE(X62(1),X(970)),(W63(1),W(980)) MOL 1 14 EQUIVALENCE(X62(1),X(1924)),(W63(1),W(1924)) MOL 1 14 EQUIVALENCE(X86(1),X(1960)),(W60(1),W(1924)) MOL 1 14 EQUIVALENCE(X86(1),X(1960)),(W60(1),W(1924)) MOL 1 14 EQUIVALENCE(X86(1),X(1960)),(W60(1),W(1924)) MOL 1 14 EQUIVALENCE(X86(1),X(1960)),(W60(1),W(1924)) MOL 1 14 EQUIVALENCE(X86(1),X(196	14	EQU	IVA	LENI	CECX	55(13	, X (756)	2.0	550	1),	WCT	156					MOL			155
14 F031VALENCE(X57(1),X(812)),(W57(1),W(812)) MOL 1 14 E001VALENCE(X57(1),X(841)),(W57(1),W(841)) MOL 1 14 E001VALENCE(X57(1),X(841)),(W57(1),W(8410)) MOL 1 14 E001VALENCE(X57(1),X(870)),(W57(1),W(870)) MOL 1 14 E001VALENCE(X57(1),X(870)),(W57(1),W(870)) MOL 1 14 E001VALENCE(X57(1),X(970)),(W57(1),W(870)) MOL 1 14 E001VALENCE(X57(1),X(970)),(W57(1),W(870)) MOL 1 14 E001VALENCE(X57(1),X(970)),(W57(1),W(970)) MOL 1 14 E001VALENCE(X51(1),X(970)),(W63(1),W(970)) MOL 1 14 E001VALENCE(X61(1),X(1024)),(W63(1),W(1024)) MOL 1 14 E001VALENCE(X86(1),X(1096)),(W80(1),W(1024)) MOL 1 14 E001VALENCE(X86(1),	14	EQU	IVA	LEN	CF. (X	56(1)	, X (784)	3, ()	1560	1),	WCT	184					MOL			156
14 EQUIVALENCE(X5A(1),X(341)),(K5A(1),W(841)) MOL 1 14 EQUIVALENCE(X5A(1),X(340)),(K5A(1),W(870)) MOL 1 14 EQUIVALENCE(X5A(1),X(340)),(K4D(1),W(970)) MOL 1 14 EQUIVALENCE(X5A(1),X(340)),(K4D(1),W(970)) MOL 1 14 EQUIVALENCE(X6A(1),X(340)),(K4D(1),W(970)) MOL 1 14 EQUIVALENCE(X6A(1),X(340)),(K62(1),W(970)) MOL 1 14 EQUIVALENCE(X64(1),X(1924)),(K62(1),W(970)) MOL 1 14 EQUIVALENCE(X64(1),X(1924)),(K62(1),W(1924)) MOL 1 14 EQUIVALENCE(X64	14	FQU	IVA	LENI	CEIX	571	12	, XL	8127	1,0	570	17,	WC	512	,,				MOL			157
14 EQUIVALENCE(159(1),X(870)),(H59(1),W(970)) HOL 1 14 EQUIVALENCE(X60(1),X(970)),(H61(1),W(970)) MOL 1 14 EQUIVALENCE(X61(1),X(970)),(H61(1),W(970)) MOL 1 14 EQUIVALENCE(X61(1),X(972)),(H61(1),W(970)) MOL 1 14 EQUIVALENCE(X62(1),X(972)),(H62(1),W(992)) MOL 1 14 EQUIVALENCE(X64(1),X(1974)),(H62(1),W(972)) MOL 1 14 EQUIVALENCE(X64(1),X(1974)),(H64(1),W(1024)) MOL 1 14 EQUIVALENCE(X64(1),X(1974)),(H64(1),W(1024)) MOL 1 14 EQUIVALENCE(X80(1),X(1976)),(H60(1),W(1024)) MOL 1 14 EQUIVALENCE(X80(1),X(1960)),(H96(1),W(1026)) MOL 1 14 EQUIVALENCE(X80(1),X(1960)),(H96(1),W(1026)) MOL 1 14 EQUIVALENCE(X96(1),X(1960)),(H96(1),W(1096)) MOL 1 14 EQUIVALENCE(X80(1),X(1960)),(H96(1),W(1096)) MOL 1 14 EQUIVALENCE(X96(1),X(1960)),(H96(1),W(1096)) MOL 1 14 EQUIVALENCE(X80(1),X(1960)),(H96(1),W(10960)) MOL 1 14 EQUIVALENCE(14	EQU	AVI	LEN	CECX	54(11	, X (841)	1,0	580	1),	W (8	41					MOL			158
14 EGUIVALENCE(X60(1),X(900)),(K61(1),W(900)) MCL 1 14 EGUIVALENCE(X61(1),X(901)),(K61(1),W(900)) MCL 1 14 EGUIVALENCE(X62(1),X(901)),(K62(1),W(902)) MOL 1 14 EGUIVALENCE(X62(1),X(902)),(K63(1),W(902)) MOL 1 14 EGUIVALENCE(X64(1),X(1924)),(K63(1),W(1924)) MOL 1 14 EGUIVALENCE(X66(1),X(1924)),(K63(1),W(1924)) MOL 1 14 EGUIVALENCE(X66(1),X(1926)),(K63(1),W(1924)) MOL 1 14 EGUIVALENCE(X66(1),X(1926)),(K63(1),W(1924)) MOL 1 14 EGUIVALENCE(X66(1),X(1926)),(K63(1),W(1924)) MOL 1 14 EGUIVALENCE(X66(1),X(1966)),(W66(1),W(1924)) MOL 1 14 EGUIVALENC	14	EQU	IVA	LEN	CECX	591	12	XC	876)	3.0	590	120	WCE	570					PUL			154
14 EGUIVALENCE(101),X(960),(M61(1),M(950)) MOL 1 14 EGUIVALENCE(10,2(1),X(961)),(M63(1),M(961)) MOL 1 14 EGUIVALENCE(10,2(1),X(1024)),(M63(1),M(1024)) MOL 1 14 EGUIVALENCE(10,X(1024)),(M63(1),M(1024)) MOL 1 14 EGUIVALENCE(10,X(1026)),(M63(1),M(1024)) MOL 1 14 EGUIVALENCE(10,X(1026)),(M63(1),M(1024)) MOL 1 14 EGUIVALENCE(10,X(1026)),(M60(1),M(1026)) MOL 1 14 EGUIVALENCE(10,0(1),X(1026)),(M20(1),M(1026)) MOL 1 14 EGUIVALENCE(10,0(1),X(1026)),(M20(10,000),(M2000),(M2000),(M2000),(M2000),(M20(10,000),(M20	14	EQU	AVI	LENI	CECX	ent.	11	X	9(10)	2,11	- NOI	1),	WIG	100					HOL			100
14 ENDIVALENCE(FAG(1),X(981)),(H82(1),W(981)) HOL 1 14 EQUIVALENCE(FAG(1),X(981)),(H82(1),W(982)) HOL 1 14 EQUIVALENCE(FAG(1),X(1024)),(H62(1),W(1024)) HOL 1 14 EQUIVALENCE(X84(1),X(1024)),(H62(1),W(1024)) HOL 1 14 EQUIVALENCE(X86(1),X(1024)),(H62(1),W(1024)) HOL 1 14 EQUIVALENCE(X86(1),X(1096)),(H80(1),W(1024)) HOL 1 14 EQUIVALENCE(X96(1),X(1096)),(H96(1),W(1024)) HOL 1 14 EQUIVALENCE(X96(1),X(1096)),(H96(1),W(1024)) HOL 1 14 EQUIVALENCE(X96(1),X(1096)),(H96(1),W(1096)) HOL 1 14 EQUIVA	14	. EGU	AVL	LENI	LELA	611	11		9303	1.0	010	170		130					NOL			101
14 EQUIVALENCE(*B3(1), X(1921)), (K63(1), H(1921)) HOL 1 14 EQUIVALENCE(X64(1), X(1924)), (H64(1), H(1924)) HOL 1 14 EQUIVALENCE(X64(1), X(1926)), (H60(1), H(1926)) HOL 1 14 EQUIVALENCE(X66(1), X(1996)), (H96(1), H(1996)) HOL 1 14 EQUIVALENCE(X96(1), X(1996)), (H96(1), H(1996)) HOL 1 15 DATA X2(1)/0, 5773502691696E 02/, H2(1)/0, 100000000E HOL 1 16 C HOL HOL 1 HOL 1 17 C HOL HOL HOL 1 18 C HOL HOL </td <td>14</td> <td>Eligi</td> <td></td> <td>LENI</td> <td></td> <td>21</td> <td>11</td> <td>X</td> <td>961)</td> <td>1,0</td> <td>1020</td> <td>111</td> <td>HIC</td> <td>101</td> <td></td> <td></td> <td></td> <td></td> <td>HOL</td> <td></td> <td></td> <td>100</td>	14	Eligi		LENI		21	11	X	961)	1,0	1020	111	HIC	101					HOL			100
14 ENDIVALENCE (X804(1),X(1)P24)),(N804(1),N(1)P24)) HDL 1 14 EQUIVALENCE (X804(1),X(1)P24)),(N804(1),N(1)P24)) HDL 1 14 EQUIVALENCE (X804(1),X(1)P56)),(N804(1),N(1)P46)) HDL 1 14 EQUIVALENCE (X804(1),X(1)P66)),(N804(1),N(1)P46)) HDL 1 14 EQUIVALENCE (X804(1),X(1)P66)),(N804(1),N(1)P46)) HDL 1 15 DATA X2(1)/0,5773502691696E 02/, H2(1)/0,1000000000E HDL 1 15 DATA X2(1)/0,5773502691696E 02/, H2(1)/0,0000000E HDL 1 15 CABSCISSAS AND WEIGHTS FOR THE GAUSS LEGENDRE INTEGRATION ORDER=3 HDL 1 16 C DATA X3(1)/, 000000000000000000000000000000000000	14	Eut	AVI	LENI	LEIT	03(11	XL	4451	210	050	111		192	,,,,,,				NUL			103
14 EQUIVALENCE(X96(1),X(1096)),(W06(1),W(1096)) KOL 15 C MOL MOL 16 DATA X2(1)/0.5773502691696E 02/, W2(1)/0.10000000000000000000000000000000000	14	E WU	TUA	LENI	FIL	041	11		LUC4		H D G			110	2411				HOL			104
LANDER CONTRACTOR CONT	1.4	EUU	AVL	LENI	LE LA	001	11		1000		MOR			10	1100				HOL			100
C DATA X2(1)/0.5773502691696E 00/, W2(1)/0.500000000000000000000000000000000000	14	EBU	AVI	LENI	LEIX	901	1)	,	1040	,,,,	MAG	(1)	1 11	110	1011				HOL			100
C DATA X2(1)/0.5773502691696E 00/, W2(1)/0.10000000000000000000000000000000000					AND	L.F								CE	NDDE	THTEP	DATTON	OPDEP-3	MOL			10/
DATA X2(1)/0,5773502691696E 00/, W2(1)/0,10000000000000000000000000000000000		C.s.s.AHS	r12	SAS	AND	W C.	10	110	FUR	1 rul		033		GE	UFL	INICO	AAT 10N	UNDERSE	MOL			140
C ABSCISSAS AND WEIGHTS FOR THE GAUSS LEGENDRE INTEGRATION ORDER#3 MOL 1 C ABSCISSAS AND WEIGHTS FOR THE GAUSS LEGENDRE INTEGRATION ORDER#3 MOL 1 C MOL 1 DATA X3(1)/.000000000000 00000 000000 000/, #3(1)/.888888888888888888888888888888888888				× 27	11.0			250	2404	604					1/3			AF 81/	MOL			190
CABSCISSAS AND WEIGHTS FOR THE GAUSS LEGENDRE INTEGRATION ORDER#3 MOL 1 C DATA X3(1)/.000000000000 00/.43(1)/.888888888888888888888888888888888888		P	*	12(11/		11	320	CO11	070	- 00		nel		110.	1 HODRY		OL DIV	MOL			170
C DATA X3(1)/.00000000000 000000 00/.43(1)/.888888888888888888888888888888888888		F 105			44:0	wr			FOD						NDOF	TNTEC	GATTON	OPDER-T	MOL			173
DATA X3(1)/, 000000000000 00/, 43(1)/, 888888888888888888888888888888888888		Constants	r12	343	a IVD	R.L.	10	113	FUR	1 110		0.003		196	TURE	THIER	RALIUN	UNUENES	MOL			193
							120	-	0000	345								801	NOL			170
NATA VIIDIA TTUEDAAAQDALUAFADDAL WIDIA SUSSESSESSESSESSESSESSESSESSESSESSESSESS			TA	×31	21/	77/	50	666	0241	ARF	001		(2)		SSSE		SSSSFA	00/	MOL			175

RUN=107	C)				0	SL	EC	E	4					1	76	/	84	11	99			2	0	. 1	3	. 8	23			P	AF	RK	E	RZ	zur	ş	PAG	E	ND.	. 1	4	
e:																																						M	1				170
C	CTS	34	S		ND		JF	10	H	1 8	F	0.	2	TH	F	C		13		1	F C	F	NC	R	F	T	N1	F			11	101	N	0		FR		MC	1				17
r			•	-			-	• •												*					-	*												MC					17
		~ /		•	,		. 0				70				-						•	,	4 6		• •			= 11			= /			0									
D.			(1			3.					22	00	+ C.	20	-	00			-	1	: .			2	14	2	1 -		4 1	20	7.8	E.		101									1/
DA.	AIA	X 4	(2	:)	· •	86	51	1.2	56	51	1:	. 4.	10	50	+	06	1	, 7	4	2)/		54	171	05	4	80	15	12	57	4 3	DE .		10,	1			PT L	1				101
C																		٩.,																				MC	JL.				18
C ABS	CIS	S A	S	A 1	ND	•	NE	10	H.	15	F	0	\$	TH	E	G	A	JS	5	L	EG	E	NC	R	E	1	NI	ΓE	SF	2 🛦	11	0	N	01	RD	ERI	:5	MC	L				18
C																																						MC	L				18:
DA	TA	X5	(1	1	1.	90	20	PP	21	20	22	00	P	28	1	00	11	, h	5	11	>/		56	8	88	8	88	88	88	38	88	BE	.2	D.	1			MC	L				18
DA	TA	X5	12)	1.	57	38	46	9	31	31	8.5	56	AE	+	0.7	11		5	21	21	1.	47	8	62	8	67	10	49	99	36	E.	- 8	0	1			MC	L				18
DA	TA	¥5	11	11	1.	90	16	17	19	84	59	33	2.6	6E	+	20	1		5	13	11	1	23	6	97	6	RE	35	0	56	19	E.	. 0	10	1			MC	1L				184
r' '								• •				-	-	-					-		• •	•									•	-						MC	14				1.81
r			•		un		JE		-			0:	2		15			15			5 0		N.P	DI					-		* 1	101	N	0	00			MC	11				1.8
	CI C	34	3	~			12	10			'	0.	`		"L	e		55	3	5	2.0					*				-				0		LAS		MC					100
						-										~ ~								-	~ .		~ 7			• •				-				MC	-				10
DA	14	X D	(1			e :	50	01	4	10	0.		or.	N.E	-	RE	1			11				1	¥ 1	3	43		21	2	0 1		-0	101				PTL.					144
DA	14	× 6	(2		· •	66	21	21	19	58	04	0	2	65	+	66	1	, "	6	2	>/		36	5	7 t		57	3	04	10	14	15.	- 6	10	·			MC	IL.				19
DA	TA	X6	(3		۰.	93	32	46	99	51	42	3.	51	51	+	ØE	1	, h	6	3	, /		17	1.	32	4	49	2	37	19	17	E.	0	0	/			MC	L				197
C																																						MC	L				193
C ABS	CIS	SA	5		ND		NE	10	H:	13	F	:01	2	TH	E	G	A	13	S	L	EG	E	NU	R	Ε	1	NT	E	GF	AS	11	10	N	0	RD	ER	:7	MC	L				194
C																																						MC	L				19
DA	TA	¥ 7	11	3	1.	20	10	0.0	10	20	0.0		2	PE	1	80	1		7	11	11	1.	41	7	0 5	9	18	33	61	13	47	E.	- 0	0	1			MC	L				190
DA	TA	¥7	12	1	/	4	15	84	15	15	17	7	74	OF	-1	0.0	1		7	2	11		3.8	11	81	a	25	0	50	15	12		. 7	a.	1			MC	1				10
DA	TA	¥7	17	5	,*	7		4 3		1.8	1, 5	00	50	QF		AC	1		7	12	1	, •	27	0	20	15	20	1	45	10	28	F.	. 0	0				MC	11				10
DA	TA	24	1 1		,*	01			171		22		27			au	1	1	-				1 3	0		1.	2,	1			A 1		- 0					MC					100
e' ''		~ 1					4 -	1 4		4 1	c	-	. /	or		O K					, ,		1 4				46	0	16	0	0 /			101				Me					17
							-																			-												PL	1				201
CossasABS	CIS	SA	S	A	ND	1 4	٩E	IC	14	15		OF	ŧ.	TF	E	C	A	52	S	L	EG	۶Ł.	NC	R	E	1	NI	E	GF	8 A 5	11	0	N	0	٩D	ER	18	MC	Ľ				28
C																																						MC	L				565
DA	TA	X8	(1).	1.	18	83	43	54	64	24	9	66	5ŧ	-	CC	11.	, h	181	11	>/		36	2	68	3	78	33	31	18	36	E	- 0	0,	1			MC	L				201
DA	TA	xa	(2	23.	1.	5;	>5	53	52	40	99	11	3	35	+	ac	1	, H	19	53	31		31	3	72	6	54	15	87	17	88	BE.	. 3	18.	1			MC	L				221
DA	TA	XB	13	53	1.	75	96	66	6	57	74	11	50	35	+	ar	1/		8	13	21		22	2	38	1	03	54	45	53	37	E.	.0		1			MC	L				28
DA	TA	XB	14	11	1.	94	50	28	99	85	64	9	15	3E	+	pe	1		8	4	1/	1.	1 2	11	22	A	53	56	29	0	38	SE.	.0	0	1			MC	L				200
r																										.~			-									Mr	1				201
C 105			c				F	10	-		F	0			F	6		10	•		= -								6.6			-	G	0	-	FD.		Mr	11				20.0
	C13	SA	\$	-	ar.		L.	10	,,,	10			•	1.			-	10	0	-	LC			-	-	*		-	0,		•••					Lne		Me					200
******							-									-																-		-				PIL.					201
DA	ATA	X 9	(1	3.	۰,	et	36	B.C	13	96	5.5	101	96	E.E		20	1	, ,	191	1)/		51	101	21	9	35	22	66	1	26	bt.		0.	/			MC	L.				211
DA	TA	X9	(2	?).	1.	32	24	52	531	42	34	12	39	11		6.6	1	, h	191	(2)/		31	5	34	17	07	7	61	19	66	BE.	- 8		1			MC	L				513
DA	TA	X 9	(3	5).	1.	61	13	37	11	43	27	0:	•5	9E	+	ne	1	. 4	191	(3	11		26	2	51	6	69	26	46	12	93	SE.	- 0	0	1			MC	L				211
DA	TA	X9	(4	1).	1.	81	36	03	51	10	73	21	56	35	41	PP	11		9	4	>/		18	0	64	8	16	0	69	94	86	E	.0	0	1			MC	L				213
DA	TA	X9	(5	5).	1.	96	68	16	3	23	95	2	76	21	+	50	11		91	15	31	1.	81	2	74	13	88	33	61	15	74	E.	.0	11	1			MC	L				210
C										-				-										-		-	-		1	-		-		-				MC	1				211
C			5		NO		JF	10	-	2 1	F	0	2	TH	IF	c	: 41	19	2	1	FC	F	NE	RI	F	T	NT	F	C 5		T 1	101	N	05	PD	FR	10	ME	11				214
	-10	3 -	5	-									•			-	-	~~		-					-	•		-	0					0.				MC	1				211
Lasses			~ /			,										-	~				~					-								-	-		,	Me	1				211
UA DA	TA	- 1	51		11	1	• 4			14	22		10	15	2		101		1	1	01		11	1	• 4			C	40		4 /	1.		21	-	001		HIC.	-				210
DA	14	×1	10		2)	1	. 4	5.	55	45	30	14	12	40	4		191	21	.,	1	10		2)	1		0	40	0	01	1	43	00	44	4	-	001	1	MC	L.				21
DA	TA	XI	60		3)	1.	. 0	79	14	09	56	29	29	35	S	5+	31	01		11	0(3)	1	• 2	1	96	8	6	56	25	11	59	8	-	00/	1	MC	L				551
DA	TA	X1	00		4)	1.	9	65	64	63	34	5	.8	89	8	E+	31	31	, 1	1	60	(4)	1	, 1	4	94	15	11	4	91	51	85	8	E•	00,	1	MC	L				221
DA.	TA	X1	80	1	5)	1.	, 9	73	59	26	52	8	51	71	7	E+	0	31		11	00	1	5)	1	. 6	6	61	11	34	44	38	8	68	8	E •	01/	1	MC	1				222
C																				-																		MC	L				22
C	CIS	SA	S	A	ND		NE	IC	H	TS	F	0	\$	1+	E	G	A	15	S	L	EC	SE.	NC	RI	E	I	NT	E	GF	AS	11	0	N	0	RD	291	111	MC	1L				220
C			-								1								-	*		-			-	•		-				-	-	-	-			H	L				220
	TA	¥ 4			1 1	1	0	60	1.0	30	00	a	2.6	CP	15	F		3		. 1	. /		1.	1	-	7	20	22	54	AR	67		7 0	a	-	00	,	NC	1				224
UA	TA	21				1	2	20	E	17		5.	20	23	11	c			1				33	1		1	2.5	10	110	1	115		2.2	5	-	03		20	1				221
0.4	TA	A1	1 (1.	5		10	4.3	13		10	C. 3			0		•	1	11		<i>c</i>)	1				0	4 7	14				7	-	0.0			1				254
DA	IA	*1	10		31	1	2	19	10	40	10	4	1 23	50	1	L +	.01		.,	11	11		2)	1		3	21	4	31	D	42	Y I	14	AI	-	001		AC	-				203
DA	14	×1	1 (4)	1.	, 7	39	.1.	25	96	5	57	41	15	2 4		1		1	1 (4)	/	, 1	e	62	: 9	20	1	NS	15	77	31		101	1	MC	L				556
DA	TA	XI	10	1	5)	1.	. 8	87	10	62	59	9	16	62	9	E +	0	31	,1	11	10		5)	1	. 1	2	55	58	21	56	94	161	9 9	0		00/	1	MC	1				236

RUN-18	7	0			(GLI	G	EN					7	6	PA	41	89	•		2	0.	1	3,	8	3			PI	R	ĸ	R	22	UR	1	PAGE	NO.	5	
	DATA	x	11	(6	>/	.9	787	221	565	58	14	68	5E	4 9	10	1.	WJ	11	(6)	1.	5	56	6	85	6	71	16	51	74	E	- 0	1/		HOL			23
C																																			MOL			23
C	ARSCI	55	AS	AN	0 1	NE	IGH	HT	5 1	FOR	R	TH	E	G	U	SS	L	E	GE	ND	RE		IN	T	EG	R		IC	N	(DRI	DE	REI	2	HOL			23
C																			-	-														-	MOL			230
	DATA	×	12	(1)	11	. 12	25	23	346	280	51	14	7 F	- 6	10	1.	W 1	21	1	1)	1.	2	49	1	41	2	15	81	3	44	BE.	-0	81		NOL			23
	DATA	X	12	(2	11	3	571	83	141	-	99	AI	AF	- (10	1.	WS	21	è :	2ì	1	2	33	4	92	5	36	51	A	30	E	- 0	01		MOL			230
	DATA	×	12	1 3	11	5	87	11	791	54:	28	66	IF	+ 6	A CA	1.	WS	21	;	15	1	2	0.2	1	67	4	26	7 2	20	1	TF	- 14	01		MOL			21
	DATE	Y	12	1 4	11	7		0.0	26	74	10	43	AF	+ 6	A IA	1.		21	2	41	7	1	60	10	78	2	AC	51	13		F.	- 0	01		MOL			23
	DATA	2	12		11		AL	11	7 21	5.6	27	04	75			1		21		5	, •		an	0	10	1	55	00	5	1	DE.	- 13	01		MOL			210
	DATE	0	12			0		11	16.	2 /1	2/1	17	35					2	;	1	` ,•		7.	-) 7 5 7	30			13			- 0			HOL			25
	UATA		16	(0		8 70	3	201		341	-	D /	r , r .	**		••	~ 1	21		01		4	12		23	3	دە		20	14		e c	11		HOL			241
														-				-			~ ~													-	MOL			24
	AHSCI	55	AS	AN	0 1	WE.	1.24	413	5 1	- 01	*	٢٣	E.	61	10	55	L	. 10	GE	ND	-	-	1 N	IT	LG	ĸ	A T	10	IN		IRI	DE	K=1	\$	MOL			24
C						-												_						-								-	~ .		MOL			24.
	DATA	X	13	C 1.)/,	. 51	100	19:	261	0 (9 (98	øe	6 E	5	10	· ,	м 1	31	(1)	1.	5	32	5	51	5	53	23	50	8	TE.	- 61	0/		MOL			244
	DATA	X	: 3	(5	11	.2	54.4	\$5	4 5 1	150	95	51	3E	- {	0	٠,	* 1	31	(2)	۰.	2	26	2	83	14	5 (?	26	20	96	BE	• 0	01		MOL			24
	DATA	X	13	(3)/,	, 41	181	19	279	51	13	64	4E	•	5 F.	/,	w 1	31	(3)	۰.	5	87	9	16	P. 1	47	53	56	89	9E	• Ø	81		MOL			241
	DATA	X	13	(4))/,	, 61	453	34	73	391	44	03	42	+ 6	23.	1,	H 1	31	(4)	1.	1	18	1	45	98	80	76	1	91	1E.	•0	01		MOL			24
	DATA	X	13	1 5)/,	. 84	315	571	B PA	90	73	33	1E	+6	13.	1,	WI	31	(5)	1.	1	38	8	73	5	10	21	9	79	E.	-13	01		MOL			241
	DATA	Y.	13	(6)/.	9	175	591	530	99	22	29	7E	+ 6	12.	1.	₩1	31	()	6)	1.	9	21	2	14	90	78	37	77	28	SE	-0	1/		MOL			24
	DATA	X	13	(7)	>/.	91	241	18:	305	54	71	85	8E	+ 6	10	1.	W 1	31	(7)	1.	4	04	8	40	0	17	65	53	16	SE.	· Pl	11		MOL			25
C																2																			MOL			25
C	ABSCI	SS	AS	AN	DI	KE!	I GH	HTS	5 1	FDI	R	TH	ε	GA	U	SS	L	EC	GE	ND	RE		IN	T	EG	RI	AT.	IC	N	(R	DE	R=1	4	MOL			25
C													-	-	-								-												MOL			25
	DATA	×	14	(1	11	. 11	386	25	191	48	70	73	4F	- 5		1.	W 1	4	(11	1.	>	15	2	63	8	53	44	5	16	F		01		MOL			250
	DATA	×	14	1 2	11	7	10	11	= 31	68	20	78	00	-	10	1.	W	11		21	1	2	15	1	QA	41	5 7	7 2	1	20	DF.	. 0	01		MOL			251
	DATA	Ş	10	1 7	57	5		3/11	14	14	16		5.5		2 (3	1		11	,	21	٠,				2.8	20	7	11 1		0/	IE.	- 0	21		MOL			35
	DATA	2	6 /1	1 11			1 7 1	201		3/11	22	14	21.		10	· •			;	11	',°			2	30	1	. 7	4 5	-	4 4	E.	- 0	21		MOL			201
	DATA	1 0	1 4					20	171	1 5.1	24	07	AE		2 12	; *	24			21			21	5	4 4		10	4	27				0/		MOL			23
	DATA		14	1 7			211		1 5	174	10	41	CE.	**	Nº 1		- 1	4		22		1	21	2	10	2	10		1	44	DE		01		HUL			250
	UAIA		14				2 04	10	400	0.51	00	27	PE.	~ •	. W.		- 1	41	5	2)		0	61	?	35	0	11	27	11	21	12	• •	1/		PUL			23
	DATA	X	14	(7)/ ·	, 90	:00	28.	581	-54	54	63	15	+ 6	00.	1,	H 1	41	(1)	' .	3	51	1	94	01	05	23	17	54	21	- 0	17		MOL			201
C						-	_												_															_	MOL			26:
C	ABSCI	55	A 5	AN	D	NE.	IG	HT:	5 /	0	R	TH	E	G/	10:	SS	L	.EC	GE	ND	RE		IN	T	EG	R	A T	10	N	1	R	DE	REI	5	HOL			265
C																																			MOL			593
	DATA	X	15	(1)/,	, 01	200	201	101	PRI	20	00	ØE	ç	10	1.	in 1	5	(1)	1.	5	05	5	78	51	41	92	25	56	5E.	-0	0!		MOL			591
	DATA	X	15	(2	27,	,21	811	191	100	931	99	74	3£	-	10	1,	Wł	51	(2)	1.	1	98	4	31	48	35	32	27	11	E	• 8	0/		MOL			263
	DATA	X	15	1 3	31.	.3	941	15	130	171	37	75	6E	- (90.	1.	W1	51	(3)	1.	1	86	1	61	81	29	01	5	56	SE.	.3	01		MOL			261
	DATA	X	15	(4	>/.	.5	190	77	211	12:	60	85	45	+ -	19.	1.	* 1	51	(4)	1.	1	66	2	69	21	85	81	6	99	E	• A	01		MOL			267
	DATA	X	15	(5	11	. 7	201	41	77:	31:	36	19	7E	+ 0	00	1.	WI	51	()	5)	1.	1	39	5	76		77	92	26	15	SE.	-0	01		MOL			26
	DATA	X	15	(5	11	. 8	182	221	55	34	11	24	3F	+ (30.	1.	WI	51	()	6)	1.	1	87	1	59	22	20	4 +	7	17	E		01		MOL			26
	DATA	×	15	(7	11	9	177	27	330	21	48	07	ØF	+ -	00	1.	W 1	51	(7)	1.	71	83	6	60	4	74	88	31	01	BE	- 0	1/		MOL			271
	DATA	X	15	(8)	5/	91	870	99	251	140	50	84	AE	• 1		1.	41	50	()	8)	1	3	87	5	32	4	9	96	1	11	E.	-0	1/		MOL			27
C																						-			-										MOL			277
6	ARSCI	22	AS	ANI		SE 1	5 G ł	175		- 01	2	TH	F	G.	111	SS	1	FC	GEI	ND	RF		TN	11	FG	2	T	IC	N	1	R	DE	Rat	6	MOL			271
C		00											-										• • •											~	NOI			270
	DATA	×	16	1 1	11	0	-	121	500		27	43	6 F	- 1		1		61		• •	,			11	5-0		12	/1 5	5	0		- 0	81		MOL			275
	DATA	÷	1.		1	2	2 4 4	6.0	161	14	77	03	LE		10	;*	W .	6		21	;•	4		-	22	0		3	1 11	0.	E	13	C./		HOL			27
	DATA		10		1		- 4 -			77.		72	75		in in			01	, !	2.	,"	11	200	51	5.0	4	13	104		70		-0	01		MOL			211
	DATA	X	10				208	11	2/1	11	20	12	.16	•	N N		-1	0		10		1		1	20	2	14	39	2	01	12.	- 10	0/		HUL			211
	0414	X	10	4	1		178	110	024		40	-	ut.	+1	14		-1			1)	' •	1	49	2	75	40		-	0	26	DE.	- MI	0/		HOL			278
	DATA	x	10	(5	1/1	7	154	100	44.	16	15	510	ME	+ (101		w 1	60	C 1	5)	/.	1	24	0	28	91	11	25	5	53	E.	-0	0/		MOL			54.
	DATA	X	16	(6)/,	.61	56	53	151	22	38	78	3E	+ (• (• ,	1,	W 1	61	()	6)	1.	9	51	5	85	11	16	83	4	92	E.	- 6	1/		POL			285
	DATA	X	16	(7	11,	91	105	57	58.	231	37	35	35	+ 6	3.	1.	hi]	6	(7)	1.	6	22	5.	35	23	59	38		47	E	• 0	1/		MOL			581
	DATA	X	16	(8))/,	91	194	101	9	3.34	99	16	4E	+2	50.	1.	*1	61	()	8)	1.	5	71	5	24	50	74	11	7	54	IE.	•0	1/		HOL			283
C																																			HOL			26
C	ABSCI	\$\$	AS	ANI	D	NE 1	(G F	115	5 F	0	\$	TH	E	G	U	55	L	EC.	GE	ND	RE		IN	TI	EG	R	T	10	N	C	R	DE	Rai	7	MOL			281
	DATA	X	17	(1)	11.	. 8	100	191	198	100	10	00	ØF	ę	10	1.	₩1	71	(1)	1.	1	79	41	46	41	10	35	6	21	E	.0	01		NOL			285

RUN=107	0	GLEGEN	76/04/89	20.13.03	PARKERZZUR	PAGE P	÷0, 6
DATA	×171 21	. 1784841814958	51-00/. #171	21/. 176562705	SALGOF-DR/	HOL	286
DATA	¥177 31	1 3512317610538	75-001-0171	31/ 168/04102	154455-00/	MOL	287
DATA	V176 41	512605310864	7E+00/.w170	41/ 15/0/15761	076815-00/	MOL	288
DATA	¥17/ 51	6576711592166	0F+02/. W17/	51/ 11513636A	46852F=00/	MOL	289
DATA	V171 61	7815149018068	06+001.W171	6)/ 111883647	101405-00/	MOL	200
DATA	VI7(9)	8802101517269	EFA001-W171	71/ 854361481	171705-01/	MOL	201
DATA	VITC 81	9104755217687	-F+001. W171	A) / 55/505201	710875-01/	HOL	203
DATA	¥171 01	0005754751144	15400/. 6171	01/ 0/1/AT02A	685485-01/	MOL	201
r'	A110 411		1240110111	111 . 241403020	00,30000011	MOL	273
r				NODE THITECOAT		HOL	205
C	3343 4NU	WEIGHTS FUR IN	E GAUSS LEGE	ADRE INTEGRAT	TON ONDER-10	HOL	243
					047445-904	HOL	240
()A : A	X160 11/	. 64//5013041/3	55-61/1-101	11/.109142302	70314E-00/	HOL	241
DATA	X18(2)/		Stern, wint	2)/,1042/0403	145056-00/	HOL	290
DATA	X18(5)/	.411/511014020	45 - 007	3)/ 1040040/5	120202-000/	MOL	299
DATA	X13(4)/			a)/,140642414	711/185-20/	MOL	300
DATA	101 5)	80170/0550735	3E . 00/ WIR(5)/ · 122355200	104305-00/	HOL	203
DATA	x10(0)/	8076074664076	EFINAL WIRL	7) / 7LUJE7903	548805-014	MOL	365
DATA	X10(/)/		35.4NY/ #101	1)1.104231302	04038E-011	HOL	363
04140	x15(8)/	. 4334234443/14	75.004 WIOL	0)/,49/145400	949702-017	HOL	384
DATA	x15(4)/	.4415051004209	32+227,+101	417.210100135	204035-011	HOL	303
L				NODE INTECOM		HOL	300
L	SSAS AND	WEIGHIS FOR IN	E GAUSS LEGE	NURE INTEGRAT	ION DEDERTIA	HOL	307
C						HOL	Sro
DATA	X191 137		ME 807, M191	11/.101054444	040/0E=00/	HOL	364
DATA	x14(2)/	.1003580450602	Ct=Nr7, #141	237,150400043	343456-00/	FOL	310
	x19: 5)/	, 3163646999636	SE=177, #191	317.152/00442	10580E=00/	HUL	311
DATA	x19(4)/	464570/413/54	0E=r0/, W191	417.142000/02	1/3010-00/	HUL	312
17A 1 4	214(2))	10402423446616	CE+02/, *191	517,128/55962	334346-29/	105	513
DATA	114(5)/	. 1204601 //3552	22+06/ W140	61/.111300045	54/332=00/	MUL	314
DATA	x14(/)/	.822/1465853/1	44+661, #140	111.414444510	2244454011	MOL	315
DATA	X19(8)/	, 4831554036148	1E+027, W14(8)/.690445427	576402-01/	MOL	316
DATA	X14(4)/	,9682831521348	3E+087, W19(917.448142267	656992-01/	MOL	317
DATA	x19(10)	.9924068038035	HE+00/, W19(1	637.194617882	297261-01/	HOL	318
C,,,,,,						MOL	319
CABSCI	SSAS AND	WEIGHTS FOR TH	E GAUSS LEGE	NORE INTEGRAT	ION ORDER=20	MOL	328
C						MOL	321
DATA	X22(1)/	.7652652113349	7E=01/. N20(1)/.152753387	13072E=00/	MOL	322
DATA	X501 511	,2277858511416	4E-661, NSU(217,149172986	47260E-00/	HOL	323
DATA	x20(3)	.3737860387154	2E-00/, +20(3)/.162896189	31838E=08/	MOL	324
DATA	x20(4)	,5196670919528	22+061,450(4)/,131088638	44918E-00/	MOL	325
DATA	X20(5)	6360536807265	1E+08/ . N20(5)/.118194531	96152E=00/	MOL	326
DATA	X591 01	,7463319864601	5E+0C/, W20(6)/.101930119	81724E-00/	HOL	327
DATA	x23(7)	.A391169718222	2E+00/, W20(7:/:632767415	76704E-01/	MOL	328
DATA	x50(8)	.9122344282513	5E+001, WSUC	8)/.626720483	34108E-01/	MOL	254
DATA	X20(9)	,9630719272779	1E+001, W201	9)/,406814298	07387E=01/	MOL	338
DATA	X28(10)	,9931285991850	9E+09/, W20(1	01/.176140071	39152E=Ø1/	POL	331
C						NOL	332
C, ABSCI	SSAS AND	WEIGHTS FOR TH	E GAUSS LEGE	NDRE INTEGRAT	ION ORDEREZS	MOL	333
C	· · · · · · · · · · · · · · · · · · ·	and a second state of the second	San Asia I and an and		and the second second	MOL	334
DATA	x51(1)		115×1/99 33	1)/.146081133	64969E-001	MOL	335
DATA	x21(2)/	,1455618541688	at - 531' M51(2)/.144524403	98997E=02/	MOL	336
DATA	x21(3)	.2888213164024	SE+001, W211	3)/.139887394	79107E-92/	HOL	337
DATA	x21(4)	.4243421202074	4E=501, #21(4)/,132268938	63334E=00/	MOL	338
DATA	x21(5)	.5516188358872	31244180432	53/.121831416	85373E=90/	MOL	339
DATA	X21(b)	. 6671388041974	1E+00/. H21(6)/.108797299	16715E=P0/	MOL	348

RUN-107	O GLEGEN	76/84/89	20.13.03	PARKERZZUR	PAGE	ND. 7
DATA	X21(7)/.7684399634	75678+00/, #210	7)/.9344442	34560332-01/	MOL	341
DATA	¥21(8)/.8533633545	8331E+00/, W21(8)/.7610211	3628378E-01/	MOL	342
DATA	x211 91/.9220993341	5044E+Pa/, W216	911.5713442	5426857E-01/	MOL	343
DATA	X21(18)/.9672268385	6630E+P01, #211	10)/.3695378	9770852E-01/	MOL	344
DATA	x21(11)/,9937521706	2036E+00/, 4210	11)/.1601722	8257774E-01/	MCL	345
C					MOL	346
CABSC1	SSAS AND WEIGHTS FOR	THE GAUSS LEG	ENDRE INTEGR	ATION ORDER=22	MOL	347
C					MOL	348
DATA	x22(1)/,6973927331)255* 110 - 32526	1)/.1392518	7285563E-00/	MOL	349
DATA	X22(2)/.2078604266	1554 . 10A . 35586	2)/.1365414	9834601E=00/	MOL	350
DATA	x22(3)/.3419358208	1254.100-38459	3)/.1311735	A478786E-00/	MOL	351
DATA	X22(4)/. 4693558379	8676E=00/, W221	41/,1232523	7681051E-AP/	MOL	352
DATA	X22(5)/. 5876404035	0691E+00/, W221	511.1129322	9628054E-00/	MOL	353
DATA	x221 01/. 1944872031)2554,199+38008	6)/.1804141	4444288E=001	MOL	354
DATA	x22(7)/.7878168259	1921E+00/, N221	71/.8594168	6217868E=01/ .	MOL	355
DATE	x22(8)/,8658125777)2254 + 100+ + 3624 d	8)/.6979646	8424520E . 01/	MOL	356
DATA	1577667567,1(P)5524	8717E+20/, W221	911,5229333	5152683E-01/	MOL	357
DATA	x22(10)/.9700604978	3542F+00/, W22(10)/.3377490	1584814E-81/	MOL	358
DATA	x22(11)/.9942945554	8239E+00/, W221	11)/.1462799	5298272E-01/	MOL	359
C					MOL	360
CABSC1	SSAS AND WEIGHTS FOR	THE GAUSS LEG	ENDRE INTEGR	ATION ORDER=23	MOL	361
6					MOL	362
DATA	x23(1)/.000000000	ABBAE PA/, #231	1)/.1336545	7216611E-00/	MOL	363
DATA	X23(2)/.1332568242	0846F-001, W23(2)/,1324628	3948470E-02/	MOL	364
DATA	Y23(3)/.2641356809	7834E-881.W23(3)/.1289057	2218808E-00/	MOL	365
DATA	X23(4)/.3983818388	3029F-001. W236	4)1.1234494	8434673E-00/	MOL	366
DATA	X23(5)/. 5095014778	4600E+001. W231	53/.1109966	4222241E-00/	MOL	367
DATA	X23(6)/ 6196098757	6364F+P2/. W231	6)/.1048920	9146454F= "0/	MOL	368
DATA	x23(7)/. 7186613631	3195E+28/.#231	71/.9291576	6860034E-01/	MOL	369
DATA	X231 81/ 8048884216	1884E+00/. W231	8)/.7928141	1776718E-01/	MOL	370
DATA	¥231 01/ 8767523582	7944F+00/. W230	511.6423242	1408525E-01/	MOL	371
DATA	X23(10)/ 9320710868	2691F+02/. W23(10)/.4823767	1731084E-01/	MOL	372
DATA	\$23(11)/. 9725424712	1811E+20/. N231	111/. 3098872	5856979E=01/	MCL	373
DATA	x23(12)/.9947693349	9755E+00/. W231	12)/.1341185	9487142E=81/	MDL	374
¢					MOL	375
CABSCI	SSAS AND WEIGHTS FOR	THE GAUSS LEG	ENDRE INTEGR	ATION ORDER=24	MOL	376
C					MCL	377
DATA	Y241 11/ 6405689286	2685F-81/. H241	11/-1279381	9534675E-00/	MOL	378
DATA	¥24(2)/ 1911188674	7362F=PR/. #241	21/.1258174	5634683E=00/	MOL	379
DATA	X241 31/ 3153426796	9616F-00/.W241	31/.1216784	7297788E-80/	MOL	380
DATA	\$24(4)/.4337935076	2684E+38/ W241	41/.1155355	6805373E=00/	MOL	381
DATA	x24(5)/.5454214713	BARUE+PP/.W241	51/.1074442	7011596E-00/	MOL	362
DATA	X241 617.6480936519	3697E+PP/. #24(617.9761865	21641136-01/	MOL	383
DATA	X24(7)/ 7481241915	78555+201. W201	71/.8619216	1531953E-01/	MOL	384
DATA	X241 61/ 8283019859	1389F+001. #241	811.7334648	1411080F-01/	MOL	385
DATA	1241 91/ BR64155270	14501 + 1941 - W241	91/ 5929858	4915437F+81/	MOL	386
DATA	¥24(10)/ 9382745520	0273E+00/. W241	181/.4427743	8817419E+81/	MOL	387
DATA	¥24(11)/ 9707285559	71305+201.W241	111/. 2853138	86289335-01/	MOL	388
DATA	124(12)/ 9051872100	9762F+66/. 5241	121/. 1234122	9799987F=81/	MOL	168
r' 041.					MOL	100
r ipert	SSAS AND WETCHTS FOD	THE GAUSS LEG	ENDRE THTEGR	ATICN ORDER=25	MOL	101
CABSCI	LOORD MIC MEJOING FUR	THE DRUGD LED	ETTER THE THE THE	and and and and a set	MOL	103
Leese MATE	¥25/ 11/ 0360003320	00005 001. 4251	11/. 1231760	5172671F+90/	MOL	101
DATA	¥251 21/ 1228646036	1.2.71F+00/.W26/	21/ 1222424	42999515-98/	MOI	194
DATA	Y25(3)/ 2438668837	2090F=03/. 125/	31/. 1104557	6353578F-001	MOL	105

RUN=10	7	0		GLEG	EN			7	6/8	41	89		S	9,	13	.0	3		PAR	RE	RZZ	UR	PAGE	NO.	8	
	DATA	¥251	4)/	34	1172	1225	889	TOF		v.	*29		4)		11		582	59	1 4	571	F = 0	0/	MOL	•		10/
	DATA	¥25/	51/	47	2333	711	415	715	- 5.0	1			5)	· ·	10	85	194	20	471	126		01	HOL			101
	DATA	¥25(611	57	1662	SIA	2412	225		1.	425	: 1	61	1	:0	15	150	140	261	105		10/	MOL			105
	DATA	¥251	71/	67	5666	166	473	INF	400	1.	* 25		71	1	31	021	824	10	8.20	21.2		11/	MOL			100
	DATA	1251	81/	760	250	263	837	351	+ 60		- 24	1	81	1	RG	141	270	43	350	102	Fol	11/	MOL			400
	DATA	¥25!	91/	83	5442	6.2A	7601	435	+02	1	N 76		9)	1	6.8	43		178	127	154		11/	MOL			401
	DATA	X251	101/	. 891	1991	997	6782	275		11.	425	11	0	1.	5,4	98	469	59	758	330	ENP	11/	MOL			482
	DATA	¥25(111/	94	974	571	228	77F	+ 0.0	11.	n 25	11	1)	1	40	93	919	67	211	196	1.00	11/	MOL			401
	DATA	¥251	1211	976	663	921	45.9	51F		1.	NOC		21	1	26	15	198	-	150	132	Fel	11/	MOL			484
	DATA	1251	131/	00	5554	040	7931	105	120	1.	* 25		3)	1	11	19	170	AS	010	326		11/	MOL			400
c : :		~							+ 1. 2				2,	•	•••				~				MOL			004
C	ASCI	2422	AND	WFT	HTS	FO		F	GAL	221	1.6	GF	ND	RF	1	NT	FGR	AT	TOP		RDF	R=26	MOL			401
		3340							0.40						•		-		10.	•••			MOL			000
~******	DATA	¥261	11/	.592	230	934	293	TF	. 2.1	1.	h 24	. 1	11	1	11	RT	214	115	275	226	Fel	10/	MOL			400
	DATA	¥261	211	170	ASA	RZA	3561	ROF	- 60	11.	+24	i	21	1	11	6.61	504	142	485	120	FOD	101	MOL			414
	DATA	X261	31/	202	2000	839	485	PAF	-90	1.	m 26		3)	1	11	33	61 F	116	546	122	FOD	101	MOL			411
	DATA	¥261	411	40	1051	755	1221	105	- 40	1.	# 26	. 1	4)	1	ia	R4	715	LIA	528	157		10/	MOL			
	DATA	¥261	511	535	6447	714	824	SIF		11.	-24	1	51	1	10	201	501	61	000	142	F	81	MOL			411
	DATA	VZAL	671	634	632	202	147.	IF	400	1	1.24		61	;•	0 /1	21	TRO	ANT	550	1 1 1	E	11/	MOL			111
	DATA	VOL	77/	404	137	24.4	1100	DEF	400		w 74		7)	;•	85	3/11	RC	111	121	18/1	5-0		MOL			
	DATA	Y261	E3/	774	TAS	QAR	8201	LAF	400	1	- 24		81	·,•	7 4	4.8	114	07	454	5.8	E-O	11/	MOL			411
	DATA	1341	911	6.43	1000	012	788	575	400	1			61	;*	62	37	101	67	205	570	5-0	11/	MOL			
	DATA	Y 74/	1311	04.	3417	864	ORA	105	+00	1	- 34		as	;•	50	071		553	07	117	5-0		MOL			411
	DATA	YDAI	111/	9:	1150	0444	1	TIF	- 00	1	-24		11	1	17	0.6	210	123	0/17	4 7		11/	MOL			140
	DATA	¥341	121/	0.40	1 2 9 5	1145	054	170	100				21		31	1	798	10	034	103	5-0		MOL			1,20
	DATA	¥241	1211	205		761	1/15	LIE	100		-20		2)		10	41	10:	174	171	202	5-0		MOL			420
r' '	UATA	AC01	1317		2003	101	1.0.30	210					2)	••	10	55	1 3 1	20	112	,43	E-E		MOL			461
		2133	-			50			~		1.5	-	ALC:						1.04			0-77	HOL			466
C	Bar 1	CACC	ANU	HETI	110	FUI	R 11	12	640	133	FC		NU	RE	1	NII	- 67	AI	10		INT.F	RECI	HUL			423
						0.00		ar															HUL			824
	DATA	Xert	11/		0000	FOF	1000	OF-	V.V.		nel	1	17		11	421	200	07	3/5	940	2.00	101	HUL			423
	DATA	X2/1	2)/	. 11.	9972	202	619	350	- 41		*21		2)		11	34	/03	46	100	196	2-6	107	MUL			420
	DATA	X21C	511	.220	454	202	434:	14r.	- 65		#27	1	33		11	12	24	00	356	84	L-F	101	MOL			427
	ATAD	XET(4)/	. 55	9993	945	638:	bit	- 96		r 27		4)		10	75	786	:05	788	153	E-E	101	MOL			425
	DATA	2271	77/	. 44	1148	651	1 2 11	odt			727		5)		10	231	110	57	017	114	E=E	101	MCL			424
	DATA	X27(63/	. 541	1551	564	5794	152	+08		#21		61	' •	96	-	576	13	166	27	t=e	1/	MOL			438
	DATA	X271	131	. 054	907	971	946	36	+ 19 14	11	me7		73		68	42.	51:	85	457	122	E-E	17	MOL			431
	DATA	X27(8)/	×71	1013	473	7390	154	+ 19 0	11	n27	(.	8)	·.	79	601	186	77	738	:57	E-P	1/	MOL			432
	DATA	x27(731	,79	1775	634	676	DIF.	+22	10	×27	(9)	1.	69	741	882	237	662	244	E=6	11/	MOL			433
	DATA	X27(181/	. 356	207	9618	0184	29E	+ 66		W 27	(1	3)	1.	58	98.	353	68	598	333	Eeg	1/	MOL			434
	DATA	X27(11)/	. 994	482	320	6770	14:	+00	1.	×27	(1	1)	1.	47	44	941	25	266	15	E=8	1/	MOL			435
	DATA	X270	1531	. 956	1016	557	814	CE	+ 80	1.	* 2 7	(1	2)		35	29	78.5	37	574	119	E=8	1/	MOL			436
	DATA	X27(1 51/	. 974	923	475	961	DEP	+ 6 2		n27	(1	.3)	1,	55	681	-21	15	961	160	E=8	11/	MOL			431
	DAJA	X27(1437	. 99!	179	262	855	1955	+00	1.	nei	(1	4)	۰.	97	98	996	105	129	743	F=6	21	MOL			438
Ceepes															_								MOL			439
C	BSCI	SSAS	AND	WEIG	HTS	FO	RTI	1E	GAU	55	LE	GE	ND	RE	1	NTI	EGR	TAI	100	4 0	RDE	R=28	MOL			448
C				_																			MOL			449
	DATA	X59(1)/	, 550	1792	895	8483	34E	-01	1.	254	1	1)	1.	11	PBI	178	.13	016	47	EPP	191	MOL			442
	DATA	X29(2)/	. 160	569	545	133	SAE	-66	1.	₩ 2 8	.(5)	1.	16	87	111	95	258	150	E.	101	MOL			443
	DATA	x59(3)/	. 272	1944	627	6351	1 A E	-64	1.	-26	1	3)	1.	10	60	557	65	955	284	EPP	191	MOL			444
	DATA	X58(4)/	. 376	251	516	8891	AF	- 213	1.	.26	10	4)	1.	16	21	129	67	578	36.9	E=6	121	MOL			44
	DATA	XSUL	5)/	. 47	674	224	955	11E	-64	1.	-56	1	5)	1.	96	931	165	79	\$79	28	E=6	11/	MOL			446
	DATA	X522(6)/	, 56	727	471	6114	+CE	+ 8.0	1.	w54	1	6)	1.	98	57	174	43	938	31	E=0	11/	MOL			447
	DATA	X58(73/	. 656	651	644	186	BAE	+00	1,	+28	11	7)	1.	83	111	541	15	588	99	E-P	1/	MOL			448
	DATA	X58(8)/	.73	616	878	2130	- 3E	+ 97	1.	-56	. ((8	1.	74		124	42	345	568	E=8	11	MOL			449
	DATA	X2B(9)/	. 805	5641	370	9171	8E	+ 88	11.	H28	11.	9)	1.	65	277	292	39	669	98	EPE	11/	MOL			458

RUN=107	0	GLEGEN	76/04/09	20.13.03	PARKERZZUR	PAGE NO.	•
DA	TA X28(18)	1.8658925225743	E+201, W281	10)/.551073456	757168-01/	MOL	451
DA	(11)85¥ AT	1.91563302639212	F+F01, W281	11)/.442729347	59084E-01/	MOL	452
DA	TA X28(12)	1.9542592806289	E+38/. #28(121/. 329814277	P2304E-P1/	MOL	453
DA	TA X28(13)	1. 9813011653708	F+PP/. #26(13)/.211321125	92771E=P1/	MOL	454
04	TA X28(14)	1.99644249757395	E+00/. W28(14)/.912426259	32944E-02/	MOL	455
C		•				MOL	456
C 485	CISSAS AND	WEIGHTS FOR THE	GAUSS LEG	ENDRE INTEGRAT	ION ORDER=29	MOL	457
C						MOL	458
DA	TA X29(1)	1.0200022000000	E PP/, W291	1)/.106479381	71831E-00/	POL	459
. D4	(S) 95% AT	1.1062762301326	E-221, 4291	2)/.145876155	89732E-80/	MOL	468
DA	TA X29(3)	11.21135225516600	1954,100-4	3)/.184073318	07773E-00/	MOL	461
DA	1A X29(4)	1.3140316378676	12=0.01, W291	4)/.181091273	75991E-00/	MOL	462
DA	TA X29(5)	1.4131528661748	E-00/, +29(511,969638348	94408E-01/	MOL	463
DA	T# X291 6)	1. 5075929551242	E+001, #291	6)/.917377571	392571-01/	MOL	464
D4	(T 195¥ AT	1.5962817971382	F+PP/, W29(7)/.854722573	66171E-01/	MOL	465
DA	TA X29(8)	1.0782145376926	E+88/, W291	A)/.782383271	35763E=01/	MOL	466
04	1A X29(9)	1.7524628517344	E+80/. +29(911.701179332	55050E-F1/	MCL	467
DA	TA X29(1E)	1.5181854576152	1054 196+30L	10)/.612030906	57P78E-01/	MOL	468
Da	TA X29(11)	1.8706376009201	F+83/, +291	11)/.515948269	02497E-01/	MOL	469
DA	(S1)95X AT	1.92116023295305	F+001.W290	12)/.414020625	18682E-01/	MOL	478
54	TA X29(13)	1.9572855957780	E+00/, #291	13)/.307404922	02093E-01/	MOL	471
54	14 ¥29(14)	1.9825455852614	F+80/. #291	1437.197328858	56123E-01/	MCL	472
DA	TA X29(15)	1.99557944226059	E+001. W291	15)/.851690387	87463E=02/	MOL	473
C						MOL	474
.C	CISSAS AND	WEIGHTS FOR THE	GAUSS LEG	ENDRE INTEGRAT	ION ORDER=30	MOL	475
C						MOL	476
DA	TA VIAC 11	1 5147130255531	F-RIL.WIRE	11/ 102852652	AQISAF. AD/	MOL	477
54	TA YTRE 21	15386001360850	F-COL. WIRf	2)/.12:7h23Rg	TURUCESARI	POL	U78
24	14 /101 31	/ 25#41692616780	F-00/.W301	3)/ 995934205	86793F=81/	MOL	479
DA	TA Y336 41	/ 3527247255328	F-23/.#321	411.963697371	746435=21/	MOL	420
04	TA Y301 51	44703376953860	F-88/. +13/	51/ 721225222	377P4F-01/	HOL	481
DA	TA YTAC 61	1 5166241481428	F+P0/	B) / 868997872	BIRBIFORI	MOL	482
DA	TA Y10(7)	/ 6225261620A02	F+PR/. #321	71/ 837558952	204195-01/	HOL	483
DA	TA VIOL BI	/ 4078504047033	E+001. +301	81/ 737550747	3773/F=21/	PDI	484
04	TA VZ3(0)	/ 7477743210/6	FIDAL WIA!	011 -507/2208	82170F=31/	MOL	485
DA	TA VIR(10)	A 8205457623627	E+80/. #30(101/ 574031562	174185-91/	HOL	486
04	TA VTO(11)	1 8025405157020	E + 07/. w10/	111/ /18/1026728	305035-31/	MOL	487
DA	TA VTR/121	1 03620603331726	FACO/ WIGI	121/ 387001025	69627F=01/	MOL	488
DA	TA YTORIT	04002186006830	E+00/	11)/ 287847878	ATT21F=01/	HOL	489
Da	TA VIACIUS	0816681212707	E+03/. #301	141/ 18/66/687	110915-01/	MOL	498
	TA YE0/15)	0068034840746	F+00/- W30(151/ 706A10240	616655-021	MOL	401
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1211 140014244	019035-051	MOL	471
C 400	TTERAS AND			ENDE INTECHAT	TON OPDER-TI	MOL	472
C	C10383 MIL	ACTONIS FOR THE	. GAUGS ELS	LAURE INTERNAL	TON UNDEREDI	KOL	473
L				11/ 007205///7	01/245-01/	MOL	444
DA			E 00// #310	21/ 002260112	34601-01/	MOL	493
0.4			E=P1/, 511	21/ 992630116	200/0E-ri/	HOL	440
DA	TA VIL 31	1 20//71 80400517	E-ORA WILL	4)/ 052032420	121185-014	HOL	497
DA	TA VIII EN	1 1881820312083	E-00/. W71/	51/ 018021170	036305-01/	MOL	400
UA DA	TA VILL 21	/ #781037520##0	E-00/ H311	61/ 875767004	08474E-01/	MOL	500
DA	TA V71(75	1 5-13/01414071	E-00/1-311	71/ 835030015	415085-01 /	ROL	500
DA		/	E-00/ 2746	R)/ 743003845	01766-014	NOL	501
DA	TA ADIL CI		E-00/ 071	01/ 101703005	150005-014	HOL	505
UA	TA X31(4)		E-121	TIT, DV02000032	410305-01 4	MOL	56.3
04	IA X31(10)		E+00/ 1=3:1	111/ 501/0/005	JUBLAS-DI	HOL	504
DA	14-X31(1))	1.03442032014620	2419/18310	111/ 541050824	CHAIDCakI/	HUL	262

RUN=187		C					G	LE	G	EN						7	6	10	4	12	9			S	0	. 1	3	e	3			P	AR	2 K	EF	Z	su	R	P	AGE	NO.	10
C		X	51	(12	31		84	9	76	ee	22	99	4	12	76	+	00	1		3	11	1	2)	1	. 4	5	49	37	70	75	52	72	20	ØE		01	,	,	MOL		50
C	ATA	X	3:	(13)/		93	2	75	69	19	79	96	t.	41	+	29	1	, ,	3	1 (1	3)	1	. 3	6	43	22	27	39	71	23	58	56		01	1	1	MOL		52
0	ATA	X	31	(14)/		96	2	SP	30	121	50	9;	2	48	+	07	31		3	1 (1	4)	1	. 2	7	33	99	1	91	8	49	7	98		11	1		MOL		50
0		×	31	(15	1/	۰,	9 8	4	68	5,9	19	96	6	11	55	+	PS	1		3	1 (15	5)	1	. 1	7	3 1	86	52	117	79	23	11	ØE		P1	1	1	NOL		58
n	ATA	X	31	(1	16	>/		99	71	25	74	8	18	19	4	7 é	+	00	1		3	1 (11	6)	1	, 7	4	10	83	51	57	19	24	18	7 F		65	1		MOL		51
C																																							1	MOL		51
C AB	SCI	SS	AS	1	A.N	D	h	EI	GI	HT	S	F	0R	1	H	E	C	AL	IS	S	L	FG	E	ND	R	E	11	VT	E.C	;R	A1	II	10	4	OF	P	ER	= 32	5 1	MOL		51
C																																							1	MOL		51
D	ATA	X	32	C	1)/	۰.	48	31	Ø7	66	.5	65	77	3	AE		21	1		3	2(1	1)	1	, 9	6	54	60	18	85	51	47	12	68		01	1		MOL		51
D	ATA	X	32	(2	31	۰.	14	: 41	47	15	0	15	82	8	ns		P. 8	1		13	21		2)	1	9	56	53	R	12	10	17	92	27	3E		21	1	1	MOL		51
D	ATA	X	32	(3)/	ί,	23	9	28	7 1	56	22	52	11	4i		20	11		3	21		3)	1	, 9	31	R 4	4	39	96	8	28	91	38		01	1		MOL		51
D	ATA	X	35	٢	4	11		33	11	86	Re	2	22	AZ	11	35		8.0	1		3	15	:	4)	1	9	1	17	38	37		9	57	6	35		01	1	1	HOL		51
0	ATA	X	32	(5	>/		42	11	35	12	71	61	34	6	St	•	PP	1		13	25	5	5)	1	, 8	70	55	25	9	38		44	10	28		81	1		HOL		51
D	ATA	X	32	(6	>/	۰.	50	61	89	99	M	59	32	2'	36	+	80	1		13	21		6)	1	. 8	3:	31	1 9	32	42	22	69	14	5E		01	1	1	MOL		51
D	ATA	X	32	1	7	11		58	17	71	57	5	57	4	7	68	+	PP	1		3	2(1	7)	1	. 7	8	9	38	99	57	78	78	16	9E		01	1	1	MOL		52
D	ATA	X	32	(A)/		66	31	F /4	40	6	60	36	3	1 6	+	P ?	11		3	21	1	8)	1	. 7	21	54	51	9	41	10	-	14	7 E		01	1	1	LON		52
0	ATA	X	32	1	9	21		73	12	18	21	11	87	4 8	121	RE	+	82	1		3	2(1	9)	1	. 6	51	32	22	22	27	77	63	56	18		01	1		MOL		52
D	ATA	X	32	(10)/		79	4	48	37	9	59	61	Q.	4 E	+	er	1		3	21	11	2)	1	.5	81	.8	4	19	34	17	85	53	56		21	1		MOL		52
D	ATA	×	32	(11	11		84	9	36	76	1	37	32	5	6E	+	2.2	1		13	21	1	1)	1	5	00	99	RE	15	92	26	23	17	51		01	1		MOL		52
D	ATA	X	32	(12	31		89	6	32	11	5	57	66	0	SE	+	00	1		1	2(1 2	2)	1	4	28	33	58	39	BP	12	22	22	6E		01	1		HOL		52
D	ATA	X	32	(13	11		93	4	97	68	7	59	37	7	48	+	AV	1		3	21	1	3)	1	3	42	27	38	16	29	71	30	12	16		01	1	1	MOL		52
D	ATA	x	32	(14	11	1	96	4	76	22	25	55	87	5	BE	+	90	1		3	21	1	4)	1	. 2	5	39	24	16	5	50	92		ZE		01	1	1	MOL		52
D	ATA	X	32	()	15	11		98	151	61	15	1	15	45	2	68	+	00	11		13	21	1	5)	1	. 1		>7	41	59	47	73	09	34	58		01	1	1	MOL		52
C	ATA	X	32	(15)/		99	77	26	38	6	18	49	4	78	+	ee	1		3	21	11	6)	1	. 7	C	18	51	1	PP	39	47	9	1 8		82	1		MOL		52
C			77																			- 1												-	• •					MOL		53
C AB	SCI	SS	AS	1	LN.	D	W	ET	GI	HT	S	F	OR	1	H	F	G		IS	9	L	FG	E I	ND	R	F	1)	T N	FC	R		11	ON		OF	0	FR	= 37	4	NDL		51
C											-					-										-	•								-	-				MOL		53
	ATA	×	33	1	1	1/		00	101	9.9	30	131		90	13	2.F		0.0	1		12	31		1)	1	. 9	3	16	A	14	61	6	87	R	95		31	1		MOL		53
D		X	33	1	2	11		93	6	31	110	5	85	47	3	3.5		01	1		13	21		2)	1	9	i	15	50	1>	-	16		.9	SF		11	1	1	HOL		52
D	ATA	×	22	è	3	57		1 5	6	43	97	99	AF	21	9	QF		no	1		3	ii		i.	1		2	12	20	28	6.6	.4	11	11	AF	-	91	1		MOL		57
0	ATA	Ŷ	27	1	4	1	•	23	7:		00	10	71	5	5	A :		20	1		2	ži	1	u'i	1	0	0:	18	1:	5	84		04	. 7	75	_	01	1		HOI		51
D	ATA	x	22	1	5	i,	, °	34		22	97	5	77	45	n	76	-	00	1		12	11		5)	1		7:	2	82	A	76	1	RA	1	25		01	1	1	MOL		51
	ATA	x	22	ì	6	1	,•	115		65	au	11	72	7:	4	SF	_	ao	1		2	21	1	5	7	A	24	4	7.	17	60	16	70	12	85		ai	1		MOL		51
D	ATA	Ŷ	11	ì	7	11		5,7	3	TR	00	a	47	RA	31	SF		10	1		17	zi		71	2	7	0	1	21	16	47	10	48	R	SF		ai	,	i i	MOL		51
D	ATA	Ŷ	11	è	a	1	•	61	0	24	27	11	58	34	3	7 6		00	1		13	11	1	ŝ	1	7	4	57	0.	15	4.8	4	10	5	25	-	0.1	,		NOL		54
0	ATA	Ŷ	12	1	0	57	•	6.8	11	73	10	50	00	-	7	UF	1	an	1		2	21		21	'	1		0	21 8	7	26	11		.5	SF		01	1		HOL		50
0	ATA	Ŷ	11	è	13	1	•	74	7	22	a.	10	5 /1	110	5	6 F	1	0.0			2	21	10	21	'	6	31	10	-1	18	25	1	32		71	2	21	,	1	MOL		5.0
	ATA	\$	22		1 4	1	,*	80	4	14	21	5		71	1	LF	1	0.0		1	2	21		11	;	5	5	17	100	1 /2	6 3	2		11	11	2	01	·,		MOL		54
0		0	17		1 1	::		BC	5	10	0.4	5	24		5		1	0 7		1	7	11			'	2	0.0		7 7		22		10		36	1	G .		1	HOL		34
0	ATA	÷	22		12		•	00	12	ZI	47	12	77	10			1	0	1	12	2.	21	4 1		'		01	1 14		- 11	11	11		-	10	2		`		MOL		50
	ATA	2	22		1 /1	1	•	01	8	31	111	17	54				1	00	6	1	2	21	17	2)	1	7	21	2 12	0.7		13	7	10	10	92	1	01	·	1	MOL		54
		0	22		15	::	•	04	61		20	1.1	20	80	0		1	00		12	1	21			'	2	20	20	LE		E 4	2.3		10	OF	-	01	5		HOL		24
0	ATA	Ĵ	22		1.5	:	•	00	4	100	51	12		20	4	76	1	00	1	1	2	31	1	51	','	1	5	11		14	101		20		46	-	01		1	HOL		54
0	ATA	Ĵ	77		17	::	٠	00	7	13	14	0	1 2	1: 4			1	() ()		1	2	21			'	1	2.	14	2						15	2	01			HOL		54
r' '		^	23		.,	.,				4 6	40		• 6		-	20		ne	1		2			''	1	0	01	0	24	. /	0 1	• /	26	1	35		U Z	·	1	HOL		24
C						2	ы		-		c		20		-	-	-			c				UD		-							-			-		- * /		UL		22
CasassAn	aci	33	AD			D,	14	¢ 1	6		э	-	UR	1	-	5	U	AU	10	5	L	26	E	٩U	RE	-	11	1 1	21		AI	1	Un	1	04	V	ER	= 34		OL		55
			5.0	,			,													1																	. .			HOL		22
0	AIA	X	34	:	1	21	٩		5	14	00	1	12	57	n	21	-	01	1	• "	3	4(1	11	1	. 7	10	22	61	4	10 1	5.5	K 5	2	8E	•	6.1	/	-	HCL.		55.
D	ATA	×	54	(2	11		13	0	15	23	5	12	29	11	DE	-	NC.	1		3	10	4	2)	1	, 9	00	1	31	54	43	57	06	13	YE	•	01			HOL		55
D	ATA	X	34	2	3	"		25	51	66	66	9	16	16	4	bE	•	6.5	1	• *	31	4(-	5)	1	8	81	C	18	10	78	13	56	19	ZE	•	01.			MOL.		55
D	ATA	X	34	1	4	11		31	5	51	10	8	13	59	4	bE	-	C. 6	1	+ h	31	4 (4	43	1	. 8	66	16	57	3	\$7	4	72	3	46	•	61	1	1	HOL		55
ח	ATA	X	36	5	5	21		59	8	35	92	7	17	36	0	SE	•	35	1		3	ur	1)	1	. 8	35	1	50	10	96	,4	98	4	4E	•	21	/	1	TOP		55
D	ATA	X	34	(6	11		48		10	65	4	1	90	5	E	-	2.5	1	• *	3	9(()	1	7	98		84	4	43	13	91	7	12		11		1	AOL		55
n	ATA	X	34	1	T	"		55	78	67	55	PI	06	69	7	4E	٠	RG	1	e #	31	"(1	1)	1,	7	55	nů.	19	17	46		2.6	3	ØE		91	/	,	NOL		55
D	ATA	X	34	0	8)/		63	11	35	17	5	16	80	5.	26		43	1	, h	3	4 (1	3)	1.	. 7	26	20	91	57	58	51	25	:5	4E		81	/		MOL		56

.

.

RUN=137	0	GLEGEN	76/84/89	20,13,23	PARKERZZUR	PAGE	NO.	11
D	ATA	1141 917.69893911	321626F+ 001 . #341	9)/.651115215	540758-01/	MCL		561
0	LTA	X34(10)/ 76106487	662987F+221. W341	101/ 590541358	27524F+01/	MCL		562
D		X 4(11) / 81668422	740093F4001.W361	1117.525274145	726775=21/	MOL		563
D	ATA	X34(12)/ 86593463	ATTUSHE+POL.WILL	12)/.455256115	23353E=81/	MOL		564
Ď	ATA	X 34(13)/ 90780967	7714325+00. +341	131/. 181665937	96367E-01/	MOL		565
D		1141/ 94216239	748510F+00/. A34:	141/. 104913806	38446F-P1/	MOL		566
D	ATA	Y34(15)/ 94872825	2533345+041. 4341	1517.225637219	85495F-01/	MOL		567
0	414	¥34/161/ 98722761	6444.31F+001.Wlar	161/ 144501627	485955-01/	MOL		548
0		¥1/(17)/ 90757175	1704535+00/ - #3//	171/ 43261/055	500875-02/	MOL		540
· · ·	~	A34(11)/ , 14/3/1/3	3	1111,0227141.33	340016-061	MOL		507
C				NADE THTEFOAT	TON ODDER-TE	MOL		576
C	2013	SAS AND MEIGHIS P	CH THE GAUSS LEG	CHURE INTEGRAT	TON UNDERASS	MOL		573
				11/ 00/08470/0	071045-014	MOL		512
C D			3754595-04/ 835/	11/ 00400/444	703715-01/	HOL		573
0	ATA	X30(2)/,005/1343	LILEORE-OOL WIEL	11 8716////46	DT1835-01/	MOL		576
0		X35(3)/ 1/005190	1330305-04/ ₩35/	JJ/ 057644637	7/102L-C1/	HOL		5/3
0	ATA	X331 4//, CDC33274	12117242 0007, 035(4)/,033000333	720912=017	HOL		5/0
10	AIA	X351 517,34000155	44 300 12 - 001, 0351	517.850005957	200000001/	HUL		3//
D	ATA	x 351 01/ 42013'54	151/016-00/,4350	6)/.144644472	423232-01/	FOL		576
D	ATA	x35(1)7,57632211	324148E+P.07, W351	717.763034571	55041E=01/	MOL		579
D	ALA	X35(8)/.58044514	4749782+097, #351	8)/,722447947	125596-01/	MOL		580
D	ATA	x35(9)/.65432436	460569E+89/, N35(9)/.672222852	69085E=21/	MOL		581
D	ATA	x35(10)/.7148145P	155663E+00/, #35(19.1.618736719	66079E-01/	MOL		582
D	ATA	¥35(11)/,77381225	228691E+02/, #351	1117.562408162	123696-01/	MOL		583
D	ATA	\$35(12)1,82674989	909222E+201.+351	12)/,497693784	01353E-01/	MOL		584
D	ATA	x35(13)/,87321912	502522E+00/, #351	13)/,431084223	20170E-01/	MOL		585
D	ATA	x35(14)/.91265426	1359328+00/, 4350	1417.361101158	63463E=@1/	MOL		586
D	ATA	x35(:51/.94534514	620782E+PA/, #35(12)1.58959591	28894E-81/	HOL		587
D	ATA	X35(16)/,97043761	603922E+20/,4350	12:1.213229799	11083E=#11	MOL		558
D	ATA	X35(17)/.98793576	444345E+AA/. W35(17)/,136508283	48361E=01/	MOL		589
D	ATA	\$35(16)/.99770656	909968E+001, N35(LE)/.588343342	04430E-021	MOL		590
C						MOL		591
C AB	SCIS	SAS AND WEIGHTS P	OR THE GAUSS LEGI	ENDRE INTEGRAT	ION ORDER=36	MOL		592
C						MOL		593
D	ATA	X36(1)/. 43018198	473708E-01/, #360	1)/.859832756	78393E-01/	HOL		594
D	ATA	X36(2)/. 12873610	380938E-00/.W30(211.353466657	39337E+01/	MOL		595
D	ATA	X36(3)/.21356089	23168+E-201, #36(3)/.840782189	79660E=31/	MOL		596
D	ATA	X36(4)/. 29668499	534403F-3.4/. W361	411.821872667	043388-01/	MOL		597
D	ATA	X361 51/ 37767254	711969F=93/.+361	511.796878289	12070F+01/	MOL		598
D	ATA	X361 611 45586394	443342F-00/. W361	617.765984106	45868F=81/	MOL		599
D	ATA	141 71/ 5306602A	592624F+00/.W361	71/ 725412850	85651F=81/	MOL		600
	ATA	Y16/ 81/ 62156765	3135985+00/.036(81/ 667451218	35735F=01/	MOL		621
D	ATA	YZ61 C1/ +6830123	658552F+00/. \$361	9)/ 640397973	55014F=01/	MOL		682
D D	ATA	141411 72948617	159155F+60/. #36/	101/ 588601402	453241-81/	MOL		687
D	ATA	V3661111/ 78557623	0132205+00/. #36(111/ 532447130	77750F-R1/	MOL		684
0	ATA	VIL(101/ 8156/716	600307FA30/ 2261	11/ 173150834	012455-31/	MOL		405
0	ATA	V74(13) / 87003087	RECOLDEARD/ HEAT	111 1110757500	236445-011	MOL		620
0	ATA	X36(13)/ 617/6777	1515445430/ W3./	1317 NOCI 31307	701075-01/	HOL		600
0	ATA	V36/151/ 0/833300	431390LT00/ #30(-17, 342130101	085406-014	HOL		007
D	ATA	A 301 1317, 94027290	-37-30C+EE/1+30()	1317,212-06214	077355-01/	HOL		000
D	ATA	13011017,41202769	154-0464067,#34()	1017.201015152	v//35t*21/	POL		019
n	AIA	* 30(1/1/,98858647	NY02C12+29/,W36()	111.129159472	0000556-01/	HOL		518
D	ATA	x 36(18)/.99783646	Candest+861, #36()	1017.556571966	424586+821	not		611
Lasses						MOL		612
CAB	SCIS	SAS AND WEIGHTS F	DR THE GAUSS LEGI	ENDRE INTEGRAT	ION ORDER=37	POL		613
						HOL		614
D	ATA	X37(1)/.00000000	DECERCE PPI, #37(11/.837683609	931385=01/	MOL		615

RUN-107	0	GLEGEN	75104129	20.13.03	PARKERZ2UR	PAGE	ND.	12
DA	TA x370	2)/.83670408954	769E-01/. W37(2)/.8347457	36258618-01/	HOL		616
DA	TA ¥370	311, 1607539382	985F - P2/. + 37 5	31/ 8259527	22364358-51/	MOL		617
DA	TA X370	411.24866779279	136F-001. +370	411.8113662	45894635=21/	MOL		618
DA	TA X370	511.32653742988	3716-52/1+370	51/.79:0866	18375288-01/	MOL		619
DA	TA ¥370	6)/. 48672650931	A32F=PR/.+376	6)/.7652620	7578528E-01/	MOL		620
DA	TA 1370	712.48171067780	120E - 201 . W371	71/.7342677	7248487E=21/	MOL		621
DA	TA ¥370	811.55334239186	158F+80/. N371	811.6977245	1555699E+01/	MOL		672
D4	TA ¥370	91/ 62109260844	1892F+011.+371	911.6564872	28727502=011	HOL		628
50	TA ¥370	101/ 6844863091	094F+02/. #370	101/ 6106451	6521235F=01/	HOL		624
DA	TA \$170	111/ 7#1078811C	19454031.4371	1111 5405108	75082745-01/	MOL		425
D.A.	TA VIT	121/ 304/5020/5	170L + 000 L 171	1357 50601430	74546245-01/	MOL		434
DA	TA V276	121/ 8/02520873/	195554001.W370	13)/ 0488536	46624365-01/	MOL		427
DA	TA V270	(A)/ BR613006315	SURELOGI, WIT	101/ 1880040	25918145-81/	HOL		428
0.4	TA V271	151/ 921781/374	2465 4201 . 8371	151/ 3246143	9847521F=21/	HOL		629
04	TA Y370	161/ 95007234324	249F+00/. #370	161/ 2548603	6993559F=01/	MOL		410
DA	TA VITO	171/ 0734030300	648F+00/. W371	171/ 1012984	44893845-01/	MOL		631
04	74 4370	181/ 98618596121	423FADA/ #370	181/ 1227878	0103207E-01/	MOL		633
DA	TA 43:1	101/ 0070///583/	TOLE + 00/ W370	10)/ 6373857	270/0705-02/	NOL		432
C		1-17, 441444 50241	191640011-310	1717 . 22:3031	E140414C=0.C/	MOL		484
C		AND WETCHTS BOD		ENDE INTERD	ATTON OPDED-IS	MOL		435
C	e19949	AND ALIGHIS FUR	THE BAUSS LEG	CADRE INICON	ATTON UNDERADO	MOL		635
		134 /0745+47004	5785-81/. W38/	11/ 8152502	02822845-01/	MOL		630
	TA VIEL	2)/ 10009/0051	7875-00/	21/ 80082/0	17735045-21/	HOL		670
DA	TA V350	21/ 222570/5340	01121-001 W380	1)/ 7000101	124152-5-01/	MOL		480
0.4	TA VIR!	/11/ 26170682070		111 783878/	16582145-011	MOL		6.00
04	TA N786	5)/ 1-0070///0/	DUTE-10/ W701	4J/ 7/10/0104	1030C10E-01/	MOL		640
	TA 2300	5)/ 570/7/244/4	1943L=£0/1=30L	21/ 1013300	354644444444	HOL		041
UA	TA 4300	5)/.43364/1074	23/2=20/1=301	01/ 1001209	2004/421=01/	HOL		042
U A	TA X300	F1/ . 303934/1/92	7505.00/	1)/ 1030250	10000400 011	HOL		643
04	TA XOOL	01/ 01/4530210	100E + 00/ + 30L	01/ 00/0373	19/91392-01/	HOL		044
()A	TA XSEL	417.63425441566	400L+707, +30(4)1,6214045	33421322-01/	HOL		645
UA	1A X380	1017.60979865037	A1054644 + 200	1017.5020034	41454402401/	FOL		040
CA DA	TA 1.55(1117, /556859037	59/12+20/ 380	1117,5343201	4410351E=01/	FUL		647
DA	TA ASAC	1217,6005441676	531E+KA/, 4300	1217,4822005	1000/501-01/	HOL		648
() A	14 X 55(13)/ 520350219	235t+NB7, #38(13)/.4270315	85146/4E=11	HOL		644
DA	1A X350	1417.8918557390	46224867,#386	1417. 5689405	12444545-011	MUL		630
DA	18 1380	15.7.92574135200	185AL+10/, #34(1517.3083450	15451/5E=01/	POL		051
DA	14 ×390	1017,9534663319	552E+001, #380	161/ 2457973	9758252E+01/	MOL		652
DA	TA X380	1737 9748463285	PRISE+007, #380	17)/.1815657	7709613E-01/	MOL		653
DA	TA X750	18)/. 98973945426	638E+00/, #38	18)/.1161344	4716469E-M1/	MOL		654
AO	TA X380	14)/.9988499305	566E+207, #38t	14)1, 2005680	14463932-021	MOL		655
Crepen						MOL		656
C ABS	CISSAS	AND WEIGHTS FUR	THE GAUSS LEG	ENDRE INTEGR	ATION ORDERESS	MUL		657
6						FUL		010
() 4	TA X39(11.00000000000	1000E PAT. #390	111.1952162	21394432-01/	MOL		659
I'A	TA X390	217, 79443564666	755E+F1/, #391	2)/.7921622	25683671-01/	MOL		662
DA	FA X39(517.15838533995	784E+00/, +34(31/ 7852361	3207369E=01/	MCL		651
DA	1A X390	417.23632555240	1031-401, #39(411.7727455	2544680E-01/	MOL		662
DA	14 7391	517,31277155920	HIAF-6611430(517.7553693	1562834E-01/	MOL		663
DA	TA X391	61/, 3872401539	156E-FR/,+39(61/.7332175	3414267E-91/	MCL		664
DA	14 X390	111,45926051230	913E-PA/, #391	1)1.7964390	-976667E-01/	MOL		665
DA	TA X390	811.52837726866	0743E+C2/,+39(811,6751763	1966230E-01/	MOL.		666
DA	TA X390	417,5041534549	727E+007, W30(41/ 6396538	0138681E+81/	MOL		667
54	TA X390	1017.65617321341	SENIE + 001, +390	121/ 6660413	6866595E • P1/	MOL		668
DA	TA X390	11)/,7148464.589	453E+PA/,+39(1111.5567269	2342915E=01/	MOL.		669
DA	TA X390	121/.76740124293	186E+80/. #390	12)1.5098460	5292129E+01/	MOL		678

PUN=187	c	GLEGEN	76184189	20.13.03	PARKERZZUR	PAGE	NÇ. 13
DA	TA 110	131/ 8159862974	3014++00/.+101	13)/. 459743811	08916F=01/	MOL	671
DA	TA ¥10	141/ 6592529379	99415 + V.C. / . W 191	1411 40673276B	47933F=01/	FOL	677
DA	TA YTS	151/ 8471671192	9794F+64/	1517.351151110	98131F+81/	MOL	673
54	TA YTU	161/ 9294031484	847764001.0101	1617.293349559	61001F-21/	MCL	674
DA	TA 139	171/ 955 7752123	20655	171/.233693848	32178E+01/	POL	675
04	TE YTO	181/ 97609A7395	33476.231.0301	151/ 172502293	93725F-P1/	MOL	676
DA	TA LICE	191/ 9902515368	5468F + Par . + 391	19)/.110167689	39164F=P1/	HOL	677
D.S	T Y 40	241/ 9981473830	65635 6861. W391	2011. 475294469	16351F=02/	HOL	678
e'						MOL	679
. A56		AND WETCHTS FOR	THE CAUSE ILC	FADRE TATEGEAT	TON CODEPEAR	MOL	680
C		FID FEIGHTS FOR	THE BAGOD EED	FURT FULLOWER	act orachere	MOL	681
DA	14 TOP	11/ 3877241758	60515-01/	111.775050479	784235-21/	MOL	687
	TA YER	21/ 1160840786	75255-201.8400	21/ 774192141	64247F=01/	MOL	681
DA	TA YUN	31/ 926975807	0137F= 001.11201	31/.761185619	00625F=01/	MOL	684
DA	TA YUG	41/ 2681521650	8725F-03/. HANC	411.747231699	57966F#81/	MOL	685
DA	TA YUR	51/ 341904000A	2576F-201. #400	51/ 7284A5821	95623F=21/	MOL	686
DA	TA YUR	61/ 41377022ES	7166F-00/. WUP!	611.706116073	91245F=01/	MOL	687
DA	TA CON	71/ 4230758016	6418F=221.W401	71/ 675120458	152331-01/	POL	688
DA	TA YUR	A11.5094671250	951254507.8400	81/. 648848134	56599F-01/	MOL	689
DA	TA XAC	911.6125536896	6768F+00/	911.613062424	92928E=01/	MOL	698
DA	TA YES	181/ 6719566845	1418F+P3/	1231.574397698	99391E-01/	MCL	691
DA	TA X48	111)/.7273182551	1944. 159+35608	11)/.552278469	83936E-P1/	MOL	692
DA	54 x 47	12)/.7783056514	2652E+00/, Wart	12)/. 486958476	35071E=01/	HOL	693
DA	TA YUP	1317.8246122305	3331E+00/. W101	1317.438729281	856728-01/	MOL	693
D4	13 147	1217.8659595032	12255+001, 4400	1411.367821679	74472E-01/	MOL	695
DA	TA YUP	1517. 9823068669	6887E+03/,+40(1527.334681952	82548E-01/	MOL	696
DA	TA XUR	1617.9328128282	75675+821, 8401	161/.279370969	118-31598	MOL	697
DA	Te xun	171/.9579168192	1378E+00/. +401	1711.222058491	94167E. 31/	MOL	698
54	Tà xua	1811.9772599499	8377E+23/. #421	161/.164210583	\$1998E-81/	MOL	679
DA	TA YUR	1977,9947252366	9446E+891, NER(1911, 104982845	31153E+01/	MOL	788
04	TA YUR	2011.9982377097	1855F+20/, Walt	20)/.452127789	853312-02/	MOL	701
C						MOL	782
2 ABS	CISSES	AND WEIGHTS FOR	THE GAUSS LEG	ENDRE INTEGRAT	ICN ORDER=41	HOL	703
C						MOL	784
DA	TA XUI	1)/. 2230025303	0030E 00/, WOIL	1)/.756955356	47298E=01/	MOL	785
DE	ia xai	2)/.7562325898	11:W. 110-35-310	2)/.751737473	116=341759	MOL	726
DA	TA X41	3)/. 1508133548	6399E-001, WU1(311.740296231	16220E=21/	HOL	707
DA	TA YUS	4) .2251396656	33428-201.+411	4)/.737518820	27222E-01/	MOL	788
DA	Ti xasi	5)/.2581762773	4162E . 32 411(5)/.722516968	119-355910	MOL	709
ŋ۵	TA XUSI	6)1.36959562226	4248E-001, #411	6)/.723376606	20610E-01/	NOL	710
. DA	TA X41	7)/,4387172770	5140E. 00/, 441(711,586207367	60875E-01/	MOL	711
DA	TA X41	8)/.5054165991	09405+001, Wall	8)/.453141964	53520E=01/	MOL	712
A G	TA 141	911.5692229410	1021E+00/,+411	P)/. 622355425	60965E=21/	MOL	713
CA	TA X41	1231. 5297648399	7219E+00/. Fult	1011.507904209	49671E-01/	HOL	714
DA.	TA Xali	1111,6867015020	3695E+201.841(11)/.556225192	425785-011	NCL	715
[) A	TA XUSI	1207.7397048030	69927+08/, h411	1211,589334542	94617E=01/	MOL	716
- DA	TA XUI	115)/.7884711452	4748E+PE!, wast	1311,465526483	59814E-01/	MCL	717
DA	TA XUI	1417.8327212204	2135E+CP7, WU11	16)/, 119251951	95929E+01/	MOL	718
DA	TA XUSI	15)/,87220:5116	45445+64114416	15)/,370177167	\$3527E=01/	MOL	719
DA	TA XUI	16)/.9266859347	SARAE+PR/, FAIL	16)/.319182117	3169¢E+01/	MOL	720
DĂ	TA XOI	17)/,9359769874	07152+241, 4411	1717,266358992	27110E-01/	MOL	721
54	TA X41	1811.9599868917	34348+011,4410	18)/,212010635	68779E=011	MOL	722
DA	TA X41	1917.07=3386735	61P8E+P3/, 8410	19)/.156449384	078185-21/	MOL	723
DA	TA XUSI	2011.9911671096	99012+03/, 4411	20)/. 999993677	39958E=021	MOL	724
DA	TA XEL	211/.9983215885	74766+681, 4411	2111.4306:4035	8:6486-02/	MOL	725

RUN=187	0	GLEGEN	76/84/89	20,13,03	PARKERZZUR	PAGE	NO. 14
L						MOL	726
LAB:	54185	AS AND WEIGHTS FUR	HE GAUSS LEG	ENDRE INTEGRA	TION OPDER#42	POL	727
C						MOL	726
С.	ATA X	42(1)/.34948943165	SSE-01/, W42(1)/.73864234	2321718-01/	MOL	729
D	ATL X	42(2)/.110645427288	152E-001. WU21	2)/,73460813	453466E-01/	MOL	730
P	ATA X	021 311.183736886566	185E-001, HU21	3)/,72656175	243802E-01/	MOL	731
D	ATA X	42(4)/.255825079342	BBE-04.1, NH2(4)/.71454714	265169E-01/	MOL	732
D	ATA X	42(5)/, 32651612446	111-001, MASC	5)/,69862992	4925926-01/	MOL	733
D	ATA X	421 6)/. 395423852042	97E-001, W421	6)/.67889703	576521E-P1/	MOL	734
D	X ATA	42(7)/,462171912070	142E-001, W421	7)/,65545624	364987E-01/	MOL	735
D	ATA X	42(8)/.525395749931	19E+00/, WU2(8)/.62843558	045001E-01/	MOL	736
D	ATA X	421 911.58774459748	11F+00/, W421	9)/.59798262	227586E-01/	MOL	737
D	ATA X	42(19)/.645883388866	125E+00/. W420	10)1.56426369	3580182-01/	MOL	738
D	ATA X	42(11)/.722494596556	17E+00/. W421	11)/.52746295	6991735-01/	MOL	739
D	ATA X	42(12)/.751279935689	48F+201, +421	12)/.48778140	792802E-P1/	MOL	729
D	ATA X	42(13)/.797962853255	48E+001. W421	1311.44543577	771965F-01/	MOL	741
D	ATA X	42(14)/.84828598326	81 E+ #2/ . W421	41/.40065735	150692F-01/	MOL	712
D	ATA Y	42(151/ B7802056981)	17F+03/. #421	151/ 35369071	097592F-01/	MOL	743
D		42(1h)/ 91095972450	12F+00/. 8421	161/ 30479240	600603F-01/	MOL	700
D	ATAY	12(17)/ 91892155715	ORFADR/ NUDI	71/ 25422959	5261135-014	MOL	745
0	ATA	HO(18)/ 96175036533	DISLADO/ WIDI	A)/ 30337860	5408635-01/	MOL	743
0	ATA	13(10)/ 0701/13536641	7/1E+03/ 8/3/		1077575-BI/	HOL	740
0		H2(23) / 0016773887/	545- 16/ WU3/	1 4 J / , 1 4 4 2 2 4 4 3	07/33/1-01/	MOL	747
0.	ATA X	42(20)/ 9415//20534	1002+00/ 142()	2011.45302203	111454E V21	HUL	740
. D.	ALAX	45(51)1. 44034401644	1002+EN/ , M42()	2117.41059956	N404495-061	MOL	749
						MOL	758
C	SCISS	AS AND WEIGHTS FOR	ME GAUSS LEGI	ENDRE INTEGRA	TION ORDER=43	NOL	751
Cerese						MOL	752
D	ATA X	43(1)/.000000000000	100E 891, 431	1)/,72215751	693798E. 91/	MOL	753
5.	ATA X	43(2)/.721524446745	BOE#01/, #43(217.72827501	971421E-P1/	POL	754
D	ATA X	43(3)/.143929884510	1716-241, 4431	33/,71403734	252513E-01/	MOL	755
D	ATA X	43(4)/,214956244866	52E-PA1, +431	4)/.70527387	765084E-01/	MOL	756
D	ATA X	43(5)/_2A4861998032	91E-93/, 8431	511.09223344	193655E-01/	HOL	757
· D.	ATA X	43(6)/.353282612964	139E-931, 4431	6)/.67555482	229363E-01/	MOL	758
D	ATA X	43(7)/.419861376029	27E-83/, W43(1)/.65541242	1263228-01/	MOL	759
D	ATA X	43(8)/. 484251176785	73E-001, 4431	81/.63182388	449395E-P1/	MOL	760
D	ATA X	43(9)/.546116316666	128E+801. N43(911.60494115	249990E-E1/	MOL	761
D	ATA Y	43(18)/.675134259039	655+901,443(611.57490461	9569105-01/	MOL	762
D	ATA X	43(11)/.669997313751	5PE+PR/.8430	111/.54187085	3158818-01/	MOL	763
D	ATA "	43(12)/.713414235265	96F+82/. #431	1211.58681192	7843895-81/	MOL	760
D	ATA X	43(13)/ 762111747190	955+32/. 4431	131/ 46751494	7543445-01/	MOL	745
D	ATAY	#1/141/ BONA75964114	935 + 001 . 8431	1411 12658957	197961F-014	MOL	765
	ATA	13/15/2 807353716300	TIFARAL WITT	51/ 161/2000	19/11225-014	NOL	760
0	ATA	11/141/ BBL/6174531	A15103/ 203/	L) / 71434/103	1401366-011	HOL	707
0		43(18)/ 003433/03210	1 15103/ W111	101/ 33020472	34: 4086-01/	KOL	700
0		43(17), 4144474076724	475,0000 - 070	1111 24134413	CC: 490C+01/	HOL	104
0.	ATA X	43[13]/ 9210/143004	035+007, M431	1011 84241430	0130302-01/	HOL	170
D		43(14)/, 463466613611	216+261,4431	14)/.14314461	423084E=017	TOL	771
D	ATA X	43(20)7, 4802/622098	2222+447, #43()	14240756	431576E=01/	FUL	211
D	AIA X	43(71)7,99195955759	CHE+MAI, WCI(2117.91034066	3144136-421	MOL	773
D.	ATA X	43(22)/.998472332242	50E+00/, #43()	2217,39194902	538441E-021	MOL	774
C						MOL	775
C AB	SCISS	AS AND WEIGHTS FOR 1	HE GAUSS LEGI	ENDRE INTEGRA	TION DRDER=44	MOL	776
C						MOL	777
D	ATA Y	441 11/.352892369641	358-811, #441	1)/,78549157	789352E=01/	MOL	778
D	ATL X	#4(2)/.1256919017PE	65E-B0/, #441	231.78197655	473557E-01/	MOL	779
D	ATA X	441 31/ 175568014775	52E-001. #441	311.69496491	661572E=01/	MOL	788

RUN=107	C	GLEGEN	76/84/89	27.13.63	PARKERZZUR	FAGE	NO.	15
DA	TA X44	1)1.2005093569	2820E-201, W241	4)/.68449079	2693655-81/	HOL		781
DA	TA ¥44	517.3:21526565	2278F=291. #441	511.67362638	S262935-01/	MOL		782
DA	TA YEA	61/ 1725761520	14715-071.8041	61/ 65338114	IPTOIRPF-R1/	MOL		763
D.4	7.3 V 5.0	71/ 4426:017/5	25415-301. 6141	Y1/ 6129:070	7132215-01/	HOL		780
	TA VP.0.	21/ 535050101	LELOBERRAY WINE	B) / 6402-734	70154545-314	MOL		745
04	TA MAA	01/ 56/16 73/67	BEATELADI WAAR	D)/ E8350060	10775045-01/	HOL		707
U.P.		· · · · · · · · · · · · · · · · · · ·		41/ DOC 3403	EL7999E=011	MAL		100
0.		10,7,8214,7343	10331E+r27. M44(1411,0000210:	25037E7E=017	HOL		/01
DA	14 X44	(11)/,0/51664/PC	COLCEPTIVI, NOUL	1111.56674446	2411465-611	HOL		783
DA	re xca	(1217, 7255310-3	60721+091, N441	1237,46578046	448351E=01/	4CL		789
DA	Th XUA	(13)/, 1722614792	CATER-DOL, NOUL	13)/.40843984	PR1969E=01/	FOL		790
DA	A XUU	(14)/.8:5:445396	54513E+001, +44(1417,40236512	2318346E=C1/	NOL		791
DA	Ta XADI	(15)/.053966595	004715+20/. W441	15)/.36725347	19138888E=21/	MOL		792
DA	16 X 44	(16)/.888534238	2860224007, 444(16)/.32381222	2812069E-01/	MOL		793
51	TA XGU	1737,918675299	734.7E+00/, Wan(173/,27875782	110-31851548	MOL		794
DA	14 X44	(18)/,9442395891	16:92+5:0/, #+4(18)/.23231481	1902019E=01/	HOL		795
DA	TA X43	(19)/.9652996586	2747E+201, W486	197/.1847:481	7358158-01/	MOL		796
01	TA X431	(20)/.981151833	:7741E+22/.+446	2811.13617586	57555886-81/	MOL		797
DA	TA X#4	2111, 992316392	3651F+807. Haur	211/.87024811	6752471-021	MOL		798
	TA YUU	2211 995 1L0200	3677F+00/. #44C	2211.37454848	1031127F=02/	HOL		709
		and a second second			source and the	Mn:		800
C	219917	AND WETCHTS FOR	THE CAUSS LES	ENDRE INTECR	TTON OPDEREUS	MOL		801
P	LOONG	and he only room	1. 1. Ca 0.33 LEG	CHUNE INITION	TICH UNDERENS	MOL		011
NI		11/ 0000000000			1022222222	MOL		002
[) A		117,0002000000	00020E 017, 9431	111,04041024	0145355-011	HUL		ors
94	1 145	2)/,6646546610	51452-01718451	217,60011310	N115666-11/	-0.		994
04	A \$45	317.13/6452659	10323E-1127, W45(517.68364571	378668E=01/	HOL		605
DA	TA XIISI	(4) , 205647489	83265 ABY . W-5(411-67565954	11636966-01/	MCL		806
04	TA YES	5)/.272655769	15237E-001, W45(5)/,66425348	449548E=01/	MOL		807
DA	TA 145	(6)/.338392654	25460E-301, W451	6)/.64968195	110-35570276	MOL		828
DA	14 2451	1)/.0025029430	5854E= 001, 4051	711,63201446	0073618E-01/	NOL		889
- DA	A 245	(8)/.0646951230	1963F-PB/, 445!	617.5:133588	4831065E-01/	MOL		810
DA	14 145	911.5245728200	16291E+P3/, HC51	9)/.58774232	7188416-01/	MOL		811
DA	14 145	101/.582150212	6935E+001,+45(1837.56134678	759785E-01/	MOL		812
D4	TA 145	(11)/.6368533944	5327E+901, 4451	1137.53226014	731268E=01/	MOL		813
03	14 145	1212 688521650	T12854221.8651	1211.50067499	2379515-01/	MOL		814
DA	TA YAS	131/ 7360PARUE	4549F-001. \$151	131/ 46668387	7163726-01/	MOL		
0.1	TA YOS	101/ 7617803125	SOTORE ADDI - WUS!	121/ #30445A	170016//F=01/	MOS		814
DA	TA VAS	1514 832034330	BORREADS/ WISI	151/ 20000354	7203325-01/	HOL		819
DA		161/ 869142/750	506 001 7007 1443(1-1/ 15726403	22214005-01/	MOL		818
51	TA VAC	(7) (50120167)	ETTELOOI JUE	1011, 332,0070	101/5455-84/	MOL		010
(. M	A 443			1111,51025574	4343136-01/	MOL		014
		1317, 422103430	140024107,8431	101/ 2009061	5467377E=017	HOL		025
DA		(14)/,405641844	95635+007, 5451	14)/,2223466/	-705/8E=r1/	HOL		863
AC	4 845	2617.966608310	5466464467, HASI	en11.1/6//555	02579572=81/	MUL		655
AC	TA X45	21)7,9519687150	13454E+BA/, N45(2117,13031104	1631583E=21/	MOL		823
0 A O	FA X451	(22)/,9325499980	147206+201,8451	25)/ 6:53:865	962181E=02/	MOL		824
DA	TA X431	(23)/,9986836451	18193E+001, W45(23)/.35826631	552835E=02/	MOL		825
C						HOL		820
C ABS!	ISSAS	AND WEIGHTS FOR	THE GAUSS LEG	ENDRE INTEGRA	TION ORDERE46	MOL		827
C						HOL		828
DA	A X46	11/.337721928	6052E-01/, H461	11/.67518685	840035E-01/	MOL		829
DA	14 X46	21/.101102475	1554E-ER/, WULL	2)/.67212613	684677E-411	MOL		830
D4	I Xuni	317.165401170	0710F=03/, W461	51/.00545874	7634536-01/	MOL		831
DA	TA YUS	411 2342528223	0627F=021. +161	411 567727	2677796-01/	MOL		812
DA	A YUL	51/ 2021/54233	01676-00/.Wast	51/ 64450301	4×71377-011	MOL		877
DA	A 940	LIV 147073877	23005-001 4440	61/ 630464 34	0.01015-014	MOL		633
		91, 3030/CC//	BBBYE-THA MAR	714 444621	173 46 56 - 04 4	NOL		034
() 4		111.617:419:51	CCONTRONT INGOL	11/ 0114 9/1	1	THE A		

9UN-187	C	GLEGEN	76/04/09	20,13,03	PARKERZZUR	PASE NO.	16
DIT	A X461 81	1.405273918388	16E-PR/. #460	611.59068434	595545E-P1/	MGL	836
DAT	A Y461 91	1.543190338201	80F+20/ 4461	911.56728325	58439585-01/	POL	837
DAT	A XUACTR	1.594628249712	718+321.4461	101/.54113415	5385856E=81/	POL	838
CAT.		1. 651334506202	00F+00/. +461	111/ 51259598	407:42F-01/	MOL	839
DAT	A ¥46(12)	1.781069512020	WOL493/, W46(2)/.4817159	181711E-01/	MOL	842
DAT	A 746(13)	1.7476843596:5	toF+ FF/. #46(3)/. 44864395	277317:+01/	MOL.	841
DAT	4 X45(14)	1.750730057075	27E+PA/. W461	417.4135219.	107678E-31/	MOL	842
DAT	A #461151	1.830246337965	DEFORAL. HUBBL	51/. 1765:305	557335F=21/	MOL	843
DAT	A X461161	1. 8659753968br	AFF- PAL. HUGE	61/ 33778621	79991865=31/	NOL	844
DAT	A YUMIITI	/ 897752711530	94F+001.4041	71/ 27751879	552202F-01/	HOL	845
DAT	4 1461181	1.925127795804	75.F+03/. +461	A)/. 25585286	1971 18F=@1/	MOL	846
DAT	A 146(19)	1.948897203444	AFF . RAL. HUGE	91/ 2130999	4754116F=01/	POL	847
DAT	A 1661201	1.968071391851	99F+P21.4461	201/ 16933514	4007836F+01/	MGL	845
DAT	A X46(21)	1. 482733669804	16+ + PA/ . + 40(11/ 12479883	377: 989E-01/	FOL	849
DAT	A X46(22)	1.992902346986	17E-04/. W461	21/ 79698982	2972455-021	MOL	RSA
DAT	A X46(23)	1.996663042133	E1E+00/.#4612	3)/. 34383088	5681870F+022/	MGL	851
C						HOI	652
CARSC	TSSAS AND	WEIGHTS FOR T	HE GAUSS LEGE	NORE INTEGRA	TION DEDER-47	PDI	851
C						MOL	854
DAT	A X47(1)	/.0PEGEAGA330PP	PRE 001.4471	1)/.66135129	9623655E-01/	POL	855
DAT	A X47(2)	1.669869239163	555-011.8476	2)/.65990533	1586849E-C1/	POL	856
DAT	A X47(3)	1.1318R4866554	511++821,4471	3)/.65557377	7665485 -81/	POL	857
541	A X47 4)	1.197106110279	112-00/, 4471	41/.64837556	235944E-31/	MOL	858
DAT	A XUTE 51	1.261465459214	975-PP/, WATC	5)/.63634216	605716E-01/	FOL	859
DAT	A X47(0)	1.324681486337	731-00/, M471	6)/,62551748	110-3356455	HOL	868
DAT	A X471 71	1.386377764484	67E-PA/, W471	7)/.67995753	32027395-01/	MCL	861
D 4 T	A X47(8)	1, 446584073104	BSE-BAL, WETC	511.59173046	942338E-01/	HOL	862
DAT	A ¥471 91	1. 524737563863	585+ AM/, 8470	9)/.57691589	293234E+31/	HOL	863
047	A X47(18)	1.568684885934	+6E+P3/,#27(1	1011.54760472	110-14527E	HOL	864
DAT	A X47(11)	1.614178599956	17F+80/, W47()	1117,52180911	780356E-01/	MCL	865
DAT	A X07(12)	1,664987747398	335+00/, W47(1	12)/,49391137	1747360E-01/	MOL	866
DAT	A ¥47(13)	1.T12886973489	WAE+ 881, #47(1	3)/,46376389	086505E-01/	NOL	867
DAT	4 ¥47(14)	1,757672918445	43E+001, #4711	4)/,43158848	6648479E-01/	MOL	868
DAT	4 x47(15)	1.759143754167	74E+00/, 847()	151/.39752586	5122530E+01/	MCL	869
DAT	A X47(16)	1.337120139899	93E+PC/, +47()	101.36172496	580175E=01/	MOL	870
CAT	A X47(171	1,871436215796	89E+001.=4711	711, 32434235	515184E-P1/	HCL	571
DAT	A \$47(18)	1.991941329438	52E+12/, 44711	811,28554150	708643E-81/	HOL	872
DAT	A X47(17)	1,928502693212	365+PH1, #4711	9)/,24549211	659659E-01/	MOL	873
DAT	A ¥47(23)	1.951033969257	78E+02/, W4712	2011.20336936	3147668E-P1/	MDL	874
DAT	4 X37(21)	1.969346787326	56E+P2/, 44717	1)/.16235333	5146433E=21/	POL	875
DAT	A X47(22)	1.963451033071	PSE+631, MC415	2)/.11962648	464312E-01/	HOL	876
DAT	A X47(23)	1,993255210987	76E+P31, #4712	23)/.76386162	2953486E=@2/	POL	877
DAT	A X47(24)	1.498718726584	21E+P3/, #47(2	24)/,32874538	120-3685524	MOL	878
C						KOL	879
C ABSC	ISSAS AND	WEIGHTS FOR T	HE GAUSS LEGE	NDRE INTEGRA	TION ORDERE48	POL	868
C						MOL	881
DAT	A x48(1)	1.323801709628	69E=P11, W48(1)/,64737696	113-3289218	POL	882
DAT	A ×43(2)	1.970045992094	62E-P1/. KEAL	211.64466164	435949E-01/	*OL	883
DAT	A XUR: ST	1.161222356368	89E-031, W481	3)/.63024235	3581647E=01/	MOL	884
DAT	1 XCA(4)	1.224763793390	09E=201, H481	431,63114142	228+253E+#1/	TOL	885
DAT	4 YU8: 5)	1.287362497355	465-001, WESI	511,02339423	5159692E=01/	MOL	885
041	A X481 51	1.348755986292	145-221, 448(611,62784659	7165893E-01/	ROL	887
D41	A 148(7)	1. HEGONDEFICS	71E+501, H48(7)/.59114839	1698394E-01/	MOL	888
34.1	A X48(8)	1.444955564756	96E-00/, W48(8)/,57277292	116-32849412	MOL	889
DAT	A YUST 91	1 523168874722	PIFOPP/. WUR!	911.55199541	LIGOCALF=01/	MAL	808

,

RUN-107	c	GLEG	EN	76/24/29	29.13.03	PARKERIZUR	PAGE	NO.	17
	ATA	X48(10)/.577	22472623397	E + 33/ . W481	1017-52890189	485193E-91/	MOL		891
	ATA	X48(11)/ 528	86739677651	F+PC/. HANE	1111, 50359015	551654F=01/	MG		897
	ALAG	X48(12)/.677	872379-3260	F+MAL.HURL	1211.47016058	492490F=31/	MOL		593
1	DETE	¥ 18(131/ 723	474110927A1	FADAL. WERL	13)/. 00574563	P56691F-01/	MET		894
	DATA	YUR(10)/ 767	· 593125157.	+ 02/. +451	141/ 41545082	9434645-21/	MON		805
	DATA	¥48(15) 847	26620402640	FARZ WURT	151/ 38241351	PASAIOF-DI/	HEL		ROA
	5454	¥48(15)/ 643	56526162438	F+00/.WLAT	161/ 34777222	5647785-21/	MOR		697
	DATA	X48(17)/ 876	57202327424	FARP/. WUHI	17)/. 31167227	A32796F=01/	MCI		ASA
	ATA	Y48/181/ 905	87911671557	FARAL BURG	181/ 27026509	706357F-01/	KOI		800
	ATA	YURI191/ 971	38669070655	FARAL WERL	191/ 23574760	R19324F-01/	ME		030
	ATA	YUA(201) 052	GA770216002	FADDI ACSI	201/ 10616160	4571555-01/	M Chi		071
	DATE	¥48(211/ 979	50150254624	FLOOL WIRL	211/ 15579115	7229445-01/	MAS		003
	DATA	VAR(221/ 064	13458172267	ELGAL WURL	2214 14477274	57031/15-01/	MAS		021
	DATA	VARIOTI/ 003	52017226636	ELEGI, WILL	22)/ 72375520	0127625-02/	MA		903
	DATA	YUS(24)/ 008	77102725282	E-BUL, WUEL	241/ 31633460	5210586-02/	MERA		0.05
r' '			1111111220202	.+	2411, 31 33 33 401	5231.302-027	MON		024
r		SAS AND WETC	HTS FOR THE	CHUSS IFC	ENDER INTERPA	TION OPDEREAS	MAR		0.37
C	10010	343 441 4610	and rok the	Sacro fra	LUDAL INTEGRA	TEUN UNDERSAY	HAI		00.8
~*****	ATA	Y/01 11/ 003		F 801. HAAT	11/ 63/68281	1.00790F-01/	MD		000
	DATA	V401 21/ 614	DULLUDR 2686	E-DII WEOK	21/ 43135500	204/1015-011/	HOI		010
	0275	Y40/ 31/ 126	58599736067	E-GAL WADE	3)/ 62052757	4651915-01/	MOL		011
	DATA	V/10/ /11/ 150	34450346164	5-30/ W/0/	111 63116119	1202545-01/	HOI		013
	DATA	V101 511 261	126178-1364	E-03/ WID!	51/ 64420200	9701935-01/	AD PSF		912
	DATA	¥49(5)/ 112	41751711075	C-03/ 4001	->/ 6030.1630	0571515-01/	MOL		913
	ATA	V/10/ 71/ 371	617556176328	-BR/ 849(71/ 58017275	7500265-01/	MCG		015
	0171	VHOI 811 130	77707111167	-401 W/101	AL 67303481	EZOIBLE-01/	MON		413
	0174	VIDI 01/ 154	47464446344137	E-00/ 0001	0)/ 51302001	53-1982-01/	H M		410
	ALTA	VIC/101/ 643	LIY20100170	EARAL MADE	10)/ 51368710	7082585.31/	MOL		018
	Dile	V//0/111/ 502	37756413560	EADDI, WUDI	11)/ 51105000	3331445-01/	MOL		410
	DATA	YU0/121/ 6/2	75441261024	F-GAL WLD!	121/ /8615695	SATESAF-RI/	MOS		028
	DATA	VA011237 633	A4182402511	E400/ . W00/	111/ 45013519	1555058-01/	MOL		031
	DATA	VA0(10) / 720	55475437746		101/ 43060/36	0812508-21/	MON		761
	DATA	V/01151/ 716	1049011/54/	E+331. #//9/	151/ 42416045	3663735-31/	M.m.		031
	DATA	VA01121/ 814	57//2715085	E+BOJ dup(1577, 43713745	063020E-01/	MOL		923
	CATA	VAG(173/ 840	6621108/1116	ELATI, MAGI	171/ 11/50/66	7016225-011	MOR		025
	DATA	YUQ(16)/ 881	10A41557300	ELAAL WURL	181/ 35071RAU	620583F-011	MITA		926
	ATA	V/10/101/ 000	58545582837	F+03/ W10/	101/ 26767618	027066F=01/	MDS		920
	ATAC	¥40(20)/ 034	(0279L755E1	E+BO/,WOCF	231/ 22-49201	587446F-01/	MM2		078
	DATA	VAD(21)/ 054	STAS847412	EARG/ WEST	511/ 148/13505	853080F-01/	HOL		920
	DATA	¥#C(221/ 971	7.222000155	ELGUIT, MADE	221/ 10062100	3756355-01/	MOG		010
	DATA	V/0/231/ 08/	75786501/121	E400/. 800/	21)/ (1020551	0315035-01/	MO		014
	DATA	VIO(21)/ 003	78866(04416	- 00/ w10/	2/11/ 70750005	0008446-03/	MITT		073
	DATA	VA3/251/ 006	500501504044I	F1321 6101	351/ 30372780	8807205-32/	ME		736
	UA · A	AU4(2377, 410)	02012000003		Con Sucieion	DCAECALOUEI	MOL		122
· · · · · ·		SAS AND WETCH			FHINDE THTECH	TTON OPDER-50	MOL		939
C	33613	SAS AND PLID	HIS FOR THE	WAUGO 1LU	LOURE THILDHA	1104 06024-50	MOR		935
		VEAL 111 110			11/ 63176616	-55-1145-011	Maria		930
	DATA	VER! 21/ 011	70335321104		21/ 41074047	1226825-01/	MOL		030
	DATA	VER: 31/ 150	204585000316	E-49/ 4510	21/ 61/55400	LOUII45-01/	KO		010
	ATA	YSOT 21/ 214	00723667604	E-GUL WERE	41/ 60127070	841760F=314	MON		0/0
	DATA	Y501 511 374	2881617051	-30/	SI/ LOTECOLE	7042505-01/	MITS		0.74
	DATA	VERT AND TIE	5002454104	-00/	6)/ 5810.08 H	S1122211-01/	MAS		003
	ATA	1501 71/ 303	4143(120761	-03/ 2501	7)/ 5:40000	6477275-01/	MOL		643
	DATE	V551 81/ 4/9	BCATTER ARP	E-PAL USPL	817.55567700	8262125-01/	MITT		0.0.0
	DATA	Y501 91/ 500	25814490744	FACO/. Shi	91/.53710421	REAGGAE	MOR		OUE
1	ATA	want 111 9 36.01							

RUN-187		GLEGH	N 76/7	189 2	28,13,83	PARKERZZUR	PAGE	ND.	18
	ATA	x50(10)/.5571	5233451065F.VP.		1.51455723	059582F=21/	MOL		946
1	ATA	152(11)/.6071	3292718445F+02		1.47620938	040466F.01/	MCL		947
	DETA	15011211 6558	3646568544F+60	(. +521:2)	1. 46945055	3039485-01/	MOL		908
	DATA	15211311 7014	SZUERTUBR PEADY	1 501 131	1/ 6-327576	335603F#71/	MCL		040
	DATA	¥52(14)/ 3640	31333286866466	1. KLA(14)	1 11528453	0001475-211	MOI		050
	DATA	V5011511 7665	SEGIDOROUDELOS		A 18643764	L125875-01/	HCL		051
		VEGILALY BOIL	23274260145460		1 75456475	61656666464717	POL		053
	DATA	VER/171/ 5151	201-20242404		1 7331733	3375765-01/	MOL		126
	DATA	VENILLITY, DOLL	2478-12444.00	· scartes	1, 20213120	CC33/00-01/	HOL		423
	DATA	x30110)/,000	5/4/45/ 161E+V2	11001101		57001755555011	HOL		424
	DATA	VERIORIA 074	F + + + + + + + + + + + + + + + + + + +	WEAT 201	1, 2030 .012	1700122-01/	HOL		422
	AIAC	X30(20)/ 4100	5401016166666464	A POIDE	1,21,0000	1/11292-01/	HOL		970
	DETA	15011111, 9500	164332626046464		.10113360	1124045-011	HUL		421
1	4141	154(22)7,472	6436316669F+00	, #30(22)	1,1438ceee	7514652	MUL		428
4	DATA	x5012517,7453	54284646462E+DC.		1.18590548	3610511-01/	MOL		959
1	AIAG	x50(24)7.5940	51464412082+PH	1.NSH(24)	1.6750790	957453E-821	MOL		950
	DATA	190(20)1,9988	C0404422007E+28.	. #58(25)	1. 29866525	531551E=02/	MOL		961
Conses							MOL		962
C Ai	SCI	SAS AND WEIGH	TS FOR THE GAU	SS LEGEN	DRE INTEGRA	TION ORDER=51	MOL		963
C							MOL		964
(DATA	×51(1)/.0000	IGGUNGSZAROE PP	, W51(1)	1.60998924	841206E=01/	MOL		965
(DATA	x511 217, 6896	1102150578E-01	, #51(2)	1. 62885464	844855E=01/	MOL		966
t	DATA	X510 337,1218	95421018h0E. P.B.	1.851(3)	11.64545586	934736E=01/	MOL		967
(AFAC	¥21(4)/,1810	770269578AE-02.	1,451(4)	11,59982315	777502E-01/	MOL		968
t	DATA	x511 517,2415	81666-4782E-00.	1. #51(5)	1.59171993	922960E=01/	MOL		969
r	ATA	X51(6)/.3732	8757633533E-00.	1, #51(6)	1,58183473	9825912=01/	MOL		978
1	LTAC	X511 71/, 357P	7545668841E-2F.	1, +51(7)	11,56958587	722257E-01/	MOL		971
1	ATA	X51(6)/.4141	33983226302-08.	1, 511 FJ	1.55521652	1095736E-01/	MCL		972
:	ATAC	X511 91/.4585	5092428684E.P.A.	1.WS10 9)	1.53878252	313845E .01/	MOL		573
. [ATA	¥51(10)/.5718	23059306 HE+HB.	++51112)	1.52256421	9305958-31/	MOL		974
t	ATA	x51(11)/.5726	5521635132E+04	1.552(11)	1.49997822	150056E-01/	MOL		975
t	ATA	151(12)/.6217	5573460072E+68.	. #51(12)	1.47773626	2436225-01/	MOL		976
1	ATAC	¥51(13)/.0683	43221175375+82.	. #51(13)	1.45372511	407649E-01/	MOL		977
1	DATA	¥511141/.7124	1445757784E . PP	. W51(14)	1.42822687	997879E-01/	MOL		978
1	ATA	¥51(15)/.7558	95154-2537F+PR	. WS1 (15)	1.42073476	285496F=81/	MOL		979
	TATA	YEI (161/ 7974	417.20038F400		1/ 17195268	923260F+21/	MOL		DAD
i i i	ATA	1511171/ 8285	197638230 .F+00	. #51(17)	1. 14: 78693	234188F=01/	MOL		ORI
	DATA	YSICIES/ EADE	56711182295+20	. 851(13)	1/ 31014071	2021505-01/	MOL		882
	DETA	Y51(19)/ RCP2	71215020525+02	. W51(10)	27775.798	5941621-011	MOL		DAL
	GETA	751(201/ 9167	73862339765+00	1. 451 (20)	1. 2461 4300	573781F=01/	MOL		084
	DATA	Y51(211, 0200	4754434296E460	. WE1(21)	/ 26059958	4017315-21/	MOL		085
	ATA	Y51/221/ 0583	678/861300FARD	1	1 17/28710	723/015-01/	MOL		084
1	1540	VE1/231/ 0730	STLASSICTOFAD3		1 13632674	08-0745-01/	MOL		087
	ATA	VE1/2011 0050	LEGOL TEODELTA		/ 10150101	3676335-01/	MOL		501
		VE1/311/ 00/13	134-113341E - FA	WEARDER	· · · · · · · · · · · · · · · · · · ·	ET 200000-071	MOL		700
	DATA	X31(23)/ 9940	0120033013:404	1421(0)	1,000000011	0323202 - 627	HOL		909
	AIA	12:15011, 4464	NAAANBOLANE + SW	1 451(20)	1.21400r11	1189446-061	FUL		446
				-			MOL		041
LassaaAi	sci	SAS AND WEIGH	IS FUR THE GAU	DO LEGENE	THE INTEGRA	TTON DROFFESS	MOL		445
							MOL		043
1	ATA	X52(1)/,2991	41197973391.01	, 452(1)	7.59812365	745291E-01/	MOL		994
I	ATA	X521 217.8963	7201648899E-P1		1,59596263	17:2476-11/	MOL		995
- [ATA	x52(3)/.1200	3554857695E-88.	1852(3)	17.59166615	405E42E-01/	MOL		996
ſ	ATA	x52(4)/.2079	P2264156375- RA	, W251 4)	17.58529561	771413E-01/	MOL		997
t	ATA	¥521 517.2000	24733685005-69.	1 49551 23	11.57682787	4525265-81/	MOL		998
C	ATAC	X251 01/,3231	9500343481E+02	, KESS 93	17.55625533	982367E=01/	MCL		995
1	ATA	¥521 711 8792	3824511400F=34.	1.1521 71	1.551+7509	6693015-001/	104		1000

RUN=187	0	GLEGEN	76190189	29,13,03	PARKEPZZUR	PAGE	NO.	19
DA	A X52(6)	1.433264867718	16E-P0/. #571	81/.53911406	932756E=81/	MOL		1001
DA	A 1521 91	/ 4809667456980	126-021. 4521	01/ 52262255	3A19845-01/	MOL		1823
DA	A X52(10)	1.5381262092851	S31+62/. 521	011.58426618	5663415=81/	MOL		1003
DA	A 152(11)	/ 587758634979	AF+08	111.48489269	7448745-211	MOL		1000
DA	A 152/121	1 635286977695	DUF+001. +521	211.46219228	172784F=01/	MOL		1005
DA	A 152(13)	1.689141904227	67+221. +521	3)/. 43803734	2598885-81/	MOL		1824
DA	A 152(14)	1.722762097000	PFF+001.W521	41/ 41351219	5825595-81/	MOL		1827
DA	A Y52/151	1.762704095193	45+001.4521	511. 38690678	1184235-81/	101		IDPR
DA	A 152(16)	1. 802007283430	TF+00/.+521	611. 35891634	815097F=21/	MOL		1820
DA	A 152/171	/ A14515412126	13F+001. #521	71/ 32064100	389718F-81/	MOL		1010
DA	A VESTIRI	/ 843086162846	345 + 001 - 4521	81/ 20018581	1471405-01/	MOL		1010
DA	1) YE2/191	/ 800336800534	10F + 001 . W521	91/ 26765053	744504F=01/	MOL		1012
DA	A 4521201	1.919486126016	12F+PU/. +521	2011,23517513	551984F=21/	MOL		1012
DA	A ¥52(21)	/ 941344853641	SE+001. +521	211/ 20184891	5079812-01/	MOL		1010
DA	A x52(22)	/ 959811826933	AF+001. +52(21/ 16780023	396301F=01/	HOL		1015
DA	A X52(23)	1.974883884221	JJE+001. W52()	31/.13315114	9523415-01/	MOL		1016
DA	A X52(24)	1. 0864461956515	541+20/. #52()	ATT 98026345	794626F=021	MOI		1017
CA	A 152(25)	1 994477594929	SIFACC/. \$5213	511.62555239	620732F=02/	MOL		1018
DA	A 4521261	/ 906051111101	945+001.652()	A1/ 26013160	5004715-02/	MOL		1010
r	- ADECENT				300-111-0.61	MOL		1825
C	TESAS AND	WEIGHTS FOR TH	HE CAUSS LEGI	NOPE INTECRA	TICN COOFPESS	MOL		1021
C	-1. 040 4.00	- HEIGI 10 10A 11	- 0×000 LCO	ADAL THILDRA	IICH DADER=33	MOL		1023
DA	A 1537 11	/ 0.00000000000000	AF 061.4511	11/ 58718794	1511645=81/	MOL		1922
DA	A YEST 21	/ 586850543202	SOF-01/. 653(21/ 58617586	232719F=01/	MOL		1023
DA	L X53(3)	/ 117167699271		1)/ 58310311	362254F=R1/	MOL		1025
DA	14 4531 41	1 175246662:55	33F=PP/. #531	417.57A10214	991712F=01/	MOL		1036
DA	14 1531 51	/ 2327216037243	77-041.4531	51/ 57106035	5362665=211	HOL		1027
C.A.	A 1531 61	/ 28939304451	AFARZ/ WILL	617.56205995	181730F. 31/	MOL		1028
DA	A 1531 71	1 345868848495	726-0011.4531	71/ 55111827	521212F=21/	MOL		1020
DA	A YSTI PI	/ 3005541860531	256-691.4531	A11 53827634	R657375-01/	MOL		1020
24	L YSTI OT	/ 4526622194611	45-301.8531	01/ 52157907	2298726-01/	ROL		1031
DA	A 153(10)	1.5042098316571	11+02/. #53()	01/ 50707691	369292F=01/	MOL		1832
54	A 253(11)	1.554019328277	6F+83/. #53()	11/. 48682675	32698E-01/	MOL		1833
DA	A X53(17)	1.601919285713	75+02/. #531	211.46889150	340750F+01/	MOL		1014
DA	A \$53(13)	1.6477437439165	SAF + 201. #5311	31/. 04733989	1036725-01/	MCL		1835
DA	A 153/141	1.691 355756011	AF+02/. #531	4)/. 42424628	634519F-01/	MOL		1036
14:	A 1511151	1. 7325642303075	1F+00/. W530	51/ 39959985	843543F=01/	MOL		1037
DA	A 153(16)	1.7712276549255	3F+38/531	6)/. 37375699	AU3482F-01/	MOL		1034
DA	4 X53(17)	1.80725249841AF	SC+001. #531	71/ 34653372	581513F=01/	MOL		1010
DA	A 153(1A)	1.5030905765050	NE+301.+5311	S1/ 31811678	45921CF.E.!/	MOL		1808
DA	A \$53(19)	/ 878439297555	4F+00/.W531	917.28262323	6178235-01/	MOL		1251
DA	A \$53(27)	1. 498182057875	125+00/.*53()	011.25809482	5187575-01/	MOL		1242
PA	A 153(21)	1 9224286432421	1F+00/.#53()	111,22669673	157670F=01/	EDL		1845
DA	A 153(22)	/ 9434953534644	3F+ 00/. #5302	2)/.19451721	107637E=01/	MOL		1844
DA	A X53(23)	1.9615090946231	3F+00/.#5362	31/.16166725	250687E=01/	MOL		1865
DA	4 X53(20)	1.9758102337145	PAF+68/ 53(41/.12826026	144248F-01/	MCL		1806
DA	A X53(25)	1.986947235423	STE+80/	5)/.94412022	849403E-624	MOL		1847
04	1 153(25)	1.99468191913366	2F. 00/. +53/	611.60242762	269484Fe32/	MOL		1848
D1	A X53(27)	/ . 998989967776	21+001.85313	7)/.25916617	285673F.02/	MOL		1840
r						MOL		1854
C	TSSAS AND	WETGHTS FOR TH	F GAUSS LEGE	NORE INTEGRA	TICN ORDERESA	MO		1051
C	i charte and	and a set of the		THE SHILDRE		HOL		1852
DA	A X546 13	1.288167481991	25-81/. 4541	117.57617536	107146F=01/	MGL		1851
DA	A 1541 21	1.8035451826326	8F-C1/.+544	211-574261 17	154111F=81/	MOL		1854
DA	A 1541 11	1.1436054273162	65-00/- N541	3)/. 57843075	558794E+01/	MOL		1855
P								

RUN-187 0 GLEGEN

76/00/09 29.13.03

PARKEPZZUR

.

RUN-107	n	GLEGEN	76/72/79	20,13,23	FARKERZZUP	PASE	NO.	28
DAT	a x546 4	37.200372	293406215-001,2501	311.5+h723!	115+376258+21/	MCL		1256
DIT	A X540 5	11.255687	SPRUTHALF-POL. HEU(511.557:376	25575295-71/	MOL		1057
DAT	A X54(0	11,3:1745	121834018-021.0545	611,5070873	62130575+01/	MOL		:058
P. 1 9	1 154: 7	31.365964	34:372:9E-031. 154(171.5304247	3-475532-21/	MOL		1259
L A I	L XECC P	17/ 410060	203255285-701/	811,5233821	6198296E-#1/	MCL		1952
DAT	A YEAL 9	1). 478358	412-8139F-607, #54(917, 5465969	71461678-01/	NOL		1861
DAT	\$ x54112	11.527538	351385935+001,4546	1011.2421242	1:4+3522E+2:/	MOL		1952
DAT	A >54/11	11.548952	766195216+P0/, #541	1111, 3739167	116+34446448	MOL		1063
DA"	7 XERL+5	11, 015383	10613:128+02/0+546	1211,4525346	h7292765-01/	MOL		1054
C 5 1	4 x54(13	11,459754	327631945-001. +560	1517,4331432	53895972-01/	MOL		1845
Da?	A X50(14	11,791963	25971917F+P0/, 1540	1437,0125130	61366448=111/	MOL		1856
047	A 754115	11.7-1526	531.FY918++002, 8541	1517,386-191	119=35015874	HOL		1267
DAT	A x53(16	11.1197:4	91534665E+HO	16)/.3612412	58483835=211	MOL		1868
DAT	4 156(1)	17.714734	TF5913578+00/, F540	1711,3347633	6464372E-811	MOL		1869
DAT	A X54(18	2)/ . P 1614.	515970762+921.4540	16)/. 3271734	2697872E=21/	MOL		1878
DAT	A X54819	1)/, 675435	454265555+1001, +541	1911,2765632	93175955-71/	MOL		1871
DAT	A X54(21)/.901E22	246284785-6881, 436	28)1.249:274	14672388-01/	MOL		1872
DAT	A X54(21	37.025214	350866656+93/04546	2111,2155045	14228535+21/	MOL		1873
DAT	A X54(22	11, 415530	9"516499E+39/, H54(2211.1875752	7621463E= 911	MOL		1072
DAT	A X54(2)	11.9.2707	#4578592E-001, #54(23)/,1558638	30359246-01/	MOL		1075
011	* x54(24	31.976686	32685790E+001.W54(74)/,1236332	E128847E-21/	MOL		1076
DAT	4 X54(25	51.977422	437397346+901,	2511,939:369.	+555293F=32/	HOL		1077
DAT	A X54(26	1.934975	117018346+201,#530	26)/.58655111	A152399E+P21	MOL		1278
DAT	A X54(27	:1.999426	00536734E+821, =54:	27)/.2497461	83576161-021	MOL		1879
Seerce						HOL		1650
C ABSC	SSAS AL	ID WEISHIS	FOR THE GAUSS LES	ENDRE INTEGR	ATION ORDER=55	HOL.		1881
C						MOL.		1982
DAT	A X55(1	11.690000	00000002E 00/, #551	\$11,566.12971	514456PE. 91/	MOL		1063
DAT	A x55(2	11.365727	53514337E-P1/, 4550	2:/,505123:	8249771E=21/	MOL		1084
DAT	A 1551 4	11,112960	248659335-0001,4556	511,562-365	\$71:383E=01/	MOL		1285
DAT	\$ x551 4	1)/,168943	963040878-901, 4551	411.5578879	115-2632-21/	MOL		1086
DAT	A 1551 5	11.220452	308647645-201, 4550	511.5515324	6882588E+81/	MUL		1967
DAT	A X556 6	11.279251	55320281E-0P/. #550	6)/.543512.0	V16-39102569	MOL		1288
DAT	A \$550 /	171.333120	27589292E-001, +55	737.5336967	J021635E-21/	MOL		1009
DAT	A 1551 5	11.345033	97374298E# P0/ 155(91/ 5221737	15456316+21/	MOL		1098
DAT	4 \$551 4	1) . 117505	2+0037172-001,4550	911.5057782	51244935-71/	MOL		1091
D+1	A 155(17	11. 4FT675	158167478+881,-550	1217.0901519	71:5515-81/	MOL		1892
DAT	A ¥55:::	37.530252	86590534E+001, #551	112/. 2777429	A551200E-01/	MOL		1893
DAT	. ¥55(12	2)/.555172	1336.24235+201. +551	12)/. 4598836	39462835-01/	MOL		1930
DAT	4 X55113	51.628194	51223993E+00/ +550	13:1,4423914	3421676E=31/	HOL		1895
DAT	A X55(14	11. 671203	990319525+701,+550	1411,4195684	6317718E-81/	MOL		1295
DAT	A X55115	11.712063	199486635+00	15:/. 1974:115	18743376=01/	MOL		1699
DAT	a x55110	11.758641	556348728+497,4550	101/ 3739015	18679652+011	MOL		1278
CAT	A X55(17	11,756815	78112762E+037, 855(1:3/, 3493237;	2873589E+81/	NOL		1899
DAT	A X55(18	11.823409	29855932E+ P0/. #550	181/,3235568	1198326145E=#1/	MGL		1122
DAT	A x55:19	11.851994	60061715E+HRA.W550	1911,2967775	11652010-21/	MOL		1101
DAT	A +55(20	11.879702	32241989F+001,8550	23)/,2093296	14303968=01/	MOL		1102
DAT	A X55(2)	37.905271	600700000001, W559	21)/.243-238	81997255+81/	HOL		1103
DAY	A X55(22	11,927851	424729786+001, 4550	19741122./122	1658216E#31/	MOL		1194
DAT	4 X55(73	11.947458	86504121E+00/, H551	2317,1899961	52:729:031/	MCL		1105
DAT	A X55124	11,954031	328595135+201.+550	2.21/. 1523645	53335128-01/	MOL		1104
CAT	A 155125	11.97/515	*35583985+03/,1.55!	251/,1192516	27178486-91/	HOL		1107
DAT	A X55126	11.9=7559	\$4119888E+627, ×551	2631.6115106	18775848-221	MOL		1198
DA7	4 X55(27	11.045037	R7784741E+08/. 550	2711,5509032	26656078-02/	MOL		1109
DAT	4 X55(25	112,099901	419564526+82/,#550	26)/.2402323	199798E=32/	MOL		1110

RUN-127 C	GLEGEN	76/04/09	20.13.03	PARKERZZUR	PAGE N	0, 21
C				-	MOL	
CABSCIS	SAS AND WEIGHTS FCR	THE GAUSS LEG	ENDRE INTEGR	ATION ORDERSSA	MOL	1112
£					HOL	
DATA	1561 11/ 277978352A	72755-011.8561	11/ 5557974	6186511F-81/	MOL	
DATA	1561 21/ BILDS16682	2435F-01/. WEAK	21/ 5540795	2583244Fm81/	MOL	1115
DATA	Y561 11/ 11P5558468	10385-00/. W561	31/ 5506489	59817615001/	MOL	1116
DATA	YEAL 41/ 1033762386	3527F-00/. W561	411.5455163	6872886F=Ø1/	MOL	1117
DATA	156(5)/ 2676229034	3434F-00/. W561	51/ 5386976	1865714F=21/	MOL	1118
DATA	×56(6)/. 3010622538	6772F .00/ . W561	61/.5302137	85240096-01/	HOL	1110
DATA	X561 71/ 3515010321	74955-001. W561	7)/.5204910	9151741F=01/	MOL	1120
DATA	1561 811.4050266829	2789F-20/. W561	A)/. 5383605	26177975-01/	MOL	1121
DATA	X561 917 4552128148	78465-001.4561	91/. 4950592	46530465=01/	MOL	1122
DATA	X56(10)/ 5039677193	8438F+00/. +560	1911.4892274	6793599E=01/	MOL	1123
DATA	X56(11)/ 5512366248	5553F+90/. 4560	11)/.4639113	3373001F-01/	HOL	1120
DATA	156(12)/ 5967221827	7366F+88/. #561	1211-4461612	76526925=81/	MOL	1125
DATA	156.1317.6403931068	0700F+02/. #561	131/. 4279321	6084666F=01/	MOL	1126
DATA	X56(14)/.6829846126	9447F+88/.+561	14)/. 4065831	1 384744F=01/	MOL	1127
DATA	156(15)/ 7216678344	5419F+00/. 4561	151/. 3848773	42592475-01/	MOL	1128
DATA	156(16)/. 7590224227	0513F+PR/. W56(16)/. 3619819	3872315E=01/	MOL	1129
DATA	x56(17)/.7440269228	9386E+00/. W56(17)/. 3379676	7115611E=01/	MOL	1130
DATA	156(18)/.8265791321	42885+00/ . W56(181/.3129087	6747310E-01/	HOL	1131
DATA	156(19)/.8565764337	6275E+02/ +561	191/.2868826	8473822E-01/	MOL	1132
LATA	X56(20)/.8839261083	2782E+PU/.W56C	8949925.1(85	72583928-01/	MOL	1133
DATA	x56(21)/.9085436204	2065E+88/ . W560	211/.2322535	1562565E-01/	MOL	1134
DATA	156(22)/.9303528802	4749F+PO/. W56(2211.2038192	9882402F=01/	MOL	1135
DATA	156(23)/ 9492864795	6196F+88/ . 561	23)/.1747551	2911401F-01/	MOL	1136
DATA	X56(24)/. 9652859219	8549F400/. W56(24)/.1451508	9278021E-01/	MOL	1137
DATA	156(25)/ 9783817291	4025F+32/. W56(251/.1150982	4340383F-01/	MOL	1138
DATA	\$56(20)7. 9862937155	##14E+68/. #561	611.5469063	1633078E=02/	HOL	1139
DATA	X56(27)/.995231226W	81065+201, 4560	5525646.1175	2460153E=02/	MOL	1148
DATA	X56(28)/.9990943438	0146E+00/. W56(28)/.2323855	3757732E-02/	MOL	1141
C					MOL	1142
CABSETS	SAS AND WEIGHTS FOR	THE GAUSS LEG	NORE INTEGR.	ATION ORDER:57	MOL	1143
C					MOL	1144
DATA	X57(1)/.000000000	ABBAF 83/. 8571	11/ 5463432	8756584Fe01/	MOL	1145
DATA	1571 211.5460715100	1647F-21/.#571	21/.5454280	3684761F=81/	MOL	1146
DATA	x571 317, 1090513328	CA795-201. 8571	311.5430847	1452497F=81/	ROL	1147
DATA	X571 41/. 1631786625	9126E-0P/. #57(4)/.5399206	14832985-21/	MOL	1148
DATA	x571 51/.2168016287	9612E+PC/.W571	5)/.5333478	584818E-01/	MOL	1149
DATA	X57(61/.2597865731	6184E+00/, #571	611.5260833	9729176E+21/	MOL	1158
DATA	x57(7)/. 3219661653	953FE-681.+571	7)/.5172486	8972517E=01/	MOL	1151
DATA	x571 6)/.3731848900	84595=99/. W571	61/.5068787	724927E-01/	MOL	1152
DATA	x57(91/.4232393914	5155E-P3/, 4571	911.4949798	24020196-01/	MOL	1153
DATA	X57(10)/. 4721316395	1797E-201.8571	31/.4816117	26616878-01/	MOL	1154
DATA	\$57(11)/.5195643:11	9114E+64/.#571	111.4668763	1873641E+01/	MOL	1155
DATA	x57:121/.5034464293	6921E+201.W571	231.4536077	5161380E+01/	MOL	1156
DATA	×57(13)/.6996418529	PATIE+00/, W571	3)/.4338644	119-34150155	MOL	1157
DATA	x57(14)/.6520162262	84975+001,4571	4)/.4142286	0872688E-01/	MOL	1158
DATA	x57(15)/.6024455511	99522+001,+576	1511.3941566	5475479E-01/	MOL	1159
DATA	X57(16)/.7338063447	44525-881,4576	6)/.3729023	4324417E-81/	MOL	1168
DATA	\$57(17)/,7669901193	5945E+001,+571	17)/.3505471	2782312E=01/	MOL	1161
DATA	x57(18)/.8028826745	47226+00/,*576	181/.3271397	43663712-01/	MOL	1162
DATA	x57(19)/.8323855211	53442+841, 4571	19)/. 3227568	119-34945-91/	MOL	1163
DATA	×57(2P)/.8614039232	5284E+68/,8570	9844775.1(95	1402130E-01/	MOL	1164
DATA	X57(21)/.8878516786	8222F+BC/.W571	2111.2513535	119-341CRF08	MOL	1165

CCC 0 0 1 1 4 × 55 1 0 0 1 1 4 × 55 8 0 0 0 0 0 1 4 × 55 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(22)/。911649676521 (23)/。912726961867 (24)/。951626626447 (25)/。9664768851341 (26)/。9796447226799	107 + 801 - W57 C	880025./(52	2794774E-72/	TOM	:	99
CCC CCC CCC CCC CCC CCC CCC CCC	(23)/.911069916521 (23)/.912726961867 (24)/.951626961867 (25)/.9664768551799 (25)/.96647226799	LON DEN AD	221/ 224498	120-391100-010	TCH		•
CCC CCC CCC CCC CCC CCC CCC CCC	(23)/ 9327755961667 (24)/ 951826526447 (25)/ 965476885175 (25)/ 979847226799						1
CC 0 0 1 1 a x 5 7 1 0 0 1 1 a x 5 8 8 0 0 1 1 1	(24)/ 951820626447 (25)/ 966476985:71 (26)/ 979447226799	12E+PB/, W576	231/ 196952	706994885-01/	NOL	11	67
CCC DATA X57 DATA X57 DATA X57 DATA X57 DATA X57 DATA X55 DATA X55 D	(25)/ 966476985:71	R7E+001, w57(028891 . 168820	530.254416-01/	MOL	11	89
CC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(26)/ 979/47226709	BREADON . WETT	002031 1130	70707515-01/	IUM		
00414 X 558 00414 X 258 00414 X 258 000000000000000000000000000000000000	64'0221 HALLA" / 1021						
0 0			101111.100	114-105536160	100		
CCC 0414 x558 0414 x558 044 x558	(27:1.9AR696537765P	275+021.4576	273/.817616	006782116-92/	NON	11	1
CCC	1283/ 995395523678	42F+99/.W576	281/.521653	347471875-02/	HOL	11	22
CCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1001/ 0001355555735	1234 1007370	341466 / 100	100-10000000	103		
CCC CCC CCC CCC CCC CCC CCC CCC							2
C C C C C C C C C C C C C C C C C C C					104	11	74
0 0 <td>AND WETGHTS FOR T</td> <td>HF CAUSS IFG</td> <td>NDEF TNTFG</td> <td>ATTON DRDFRESS</td> <td>NON</td> <td>-</td> <td>14</td>	AND WETGHTS FOR T	HF CAUSS IFG	NDEF TNTFG	ATTON DRDFRESS	NON	-	14
0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
00000000000000000000000000000000000000					TOM	11	-
0 0	11/268470123659	425-21/.N581	11/.536811	19863333E-01/	HOL	11	17
0 0 <td>111602727008 / 1C J</td> <td>1924 1 46-310</td> <td>140313 / 10</td> <td>1122010575-011</td> <td>IUM</td> <td></td> <td></td>	111602727008 / 1C J	1924 1 46-310	140313 / 10	1122010575-011	IUM		
00000000000000000000000000000000000000	1+13400000000000000000000000000000000000	lucul large		11111000000	-		
00000000000000000000000000000000000000	C 31/ 133848258595	47E-87/ #58(31/ 532172	364465786-01/	JOH	11	14
00000000000000000000000000000000000000	1 41/ 186846951835	76F-001. W5RC	411.577546	93524370F=01/	MDL	11	88
00000000000000000000000000000000000000							
0 0 0 0 0 0 0 0 0 0 0 0 0 0	001+31005153.11C 1	100-100-301	aunisce / Ic	110-34000:1140	JUL	11	10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(6)/.291076914311	11E-00/ . W58C	61/ \$13750	546182845-71/	NOL	11	20
00000000000000000000000000000000000000	11/ 342407653597	99F-001.WGAL	71/ 504619	42479952F=01/	ICW		1.0
00000000000000000000000000000000000000							
0 0 <td>SCOP22CP196./10)</td> <td>1964 / 109-361</td> <td>621, 444055</td> <td>13-319603555</td> <td>TOM</td> <td>11</td> <td>-</td>	SCOP22CP196./10)	1964 / 109-361	621, 444055	13-319603555	TOM	11	-
0414 K58 0414 K58 0400000000000000000000000000000000000	(9)/.440766839186	84E-001, +5A(91/.482022	859454176-01/	MOL	11	85
00000000000000000000000000000000000000	191/ 488319537216	725-03/.4580	PJ/ 468622	56729825E . 21/	NOL	11	86
00000000000000000000000000000000000000	CTANALTWORK		111 112231		103		
00000000000000000000000000000000000000	0004.35000000000000000000000000000000000		1 1000-111				2
00000000000000000000000000000000000000	Nelee1149472. / [51]	222+00/ * 198()	11912431811	V 55 55559E * 01/	JOH	11	10
00000000000000000000000000000000000000	(13)/.621960435263	07E+00/. W58()	3)/.428488	633295825-01/	1CH	11	
00000000000000000000000000000000000000	C123//800277 / \//	LOT A CONSCI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
20000000000000000000000000000000000000	Secondered Sont I	1004104107	SCLIDD' / Th	1100100600000	104	11	2
00000000000000000000000000000000000000	(151/.702518571153	91E+03/ WSR()	15)/.382260	138458585-01/	MOL	11	10
00000000000000000000000000000000000000	1411/7:951 2731 3281	DUF+00/ WSAL	411.341444	248470875-011	103	-	
20000000000000000000000000000000000000							
00000000000000000000000000000000000000	5311000/Ch/1*/////	100" / / / / / /	020456 . ///	11. JCInchag	Jou	11	-
0414 X59 0414 X59 0414 X59 0414 X59 0414 X59 0414 X58 0414 X58	[18]/ 874466327913	085+03/. W581	81/,316808	91253889Ee81/	MOL	11	44
0414 Y58 0414 Y58 0414 Y589 0414 Y589 0414 Y58	(19)/ 837998013339	37E+00/, W5A(911.293078	18P40168E-01/	TOM	11	56
0474 X59 0474 X59 0474 X58 0474 X58 0474 X58	120101200210021	BIF+00/ . NEAC	CA2845-100	UTIRIGRIF	NON		40
0414 ×53 0414 ×53 0414 ×58 0414 ×58						•••	
0414 X53 0414 X53 0414 X53	224246206140.1121	1661.1694329	JC10828/112	113-349402120	וחב	11	-
DATA X58 DATA X58 DATA X58	12231,914609328564	32E402/0424	101715./(5	10-30148145145	JOH	11	99
0414 ×58	(23)/ 034982137588	25E+00/ *58C	231/.198424	65461893E=01/	MOL	11	66
DATA X58	12011 952667557518	BTF+001. HEAL	801241 162198	10-110112011	ICH	~	8
DEX BIAD							
	545242040105 1(C2)	925+99/ " + 581	244441.144	3/112989E=M1/	TON	12	10
Lala XOGI	263/ 979755014694	34E+20/ +58(26)/.137415	535328795-01/	NOL	12	23
DATA YER!	1 27 1 98907934674	CUF + ROV - WERL	791007 1170	KAUQUORAFens/	NOI		20
ATA VLO	1961 00555117-507	SOFLOOP LEST	2011 50100	100-10010111	10.1		
			or care a care				
ACX TIND	1:10000001+++ 1(+2)	JOCH / / / / / / / / / / / / / / / / / / /	2110126/16	12303b1204025	Tor	2	2
					LON	12	90
C 485C 755A5	AND WEIGHTS FUR T	HE GAUSS LEGE	NDRE INTEG	FATION ORDER=59	NCH	12	50
					107		
						10	0
DATA X59	Personangedera"/(1)	165 " 102 100	11/ 527980	12-306612921	DI	12	5
DATA X59	(21/ 5277348-3883	105-01/04201	211.527244	33859127E-01/	NOL	12	81
DATA VEDI	111 105200100. L	THE-ART LEON	11. 526310	1 10-100041701	102		
INCX RIND	Jacowczeliet./(#)	THE WERE AND	016156.164	53646375E=F37	JOL	12	N
LATA X59	20122996655733921	041 - PA/ . 501	51/-516248	193978976-21/	NOL	12	
DATA VEOL	1 411 24MC 12017202172021	A11-001. 4401	411 500487	11011011011	104		
DEX VITO	\$ 3003/ \$15115 "/(L)	3644743-310	11/ \$581 199	113-34642754A	JOL	12	5
DATA X59	(8)/ . 361228914169	YOE-PG/ . 459C	B1/ . 492326	80679361E-P1/	TON	23	16
DATA YESI	1 91 4 4059253 . 7HIS	1034-NO1-400	011.481574	047546455-01/	105	~	-
TTT VED	Fact 100/2 4/2 / 01/	Construction of the second					
NACK BIND	C.201144164 / A.	1464 1094100	107507 . / A	100000000000000000000000000000000000000	101	10	
DATA X59	1000021878787.00001	715+89/ "HSAC]	:)/. 456878	229425095.01/	MOF	12	-
DATA X59(1211.548672427598	39E+ RAL. 459()	271-441434	U 1538296E-01/	HOL	12	
The state of the s							

.

RUN-181	,	0	GL	EGEN		76/84	189	23,	13,6	23	FAR	KERZZ	UF	PAGE	ND.	25
	DATS	x591	13)/.5	92827	4878483	E+00/	, +591	1337.	425	5003	62119	67E=0	1/	HOL		1221
	DATA	19591	1411.6	137320	-623885	F+SP/	. 4591	14)/.	13.5	1103	55384	Shf = 7	11/	MOL		1222
	DATE	1531	15)/.6	736718	6458493	F+00/		1517.	192	1823	30161	595-8	11	MOL		1223
	DATA	XSQL	1611.7	11733	1607719	E+28/	. 4591	15)/.	3701	8661	93152	70E-4	11/	HOL		1224
	DATA	2591	1711.7	47A1P	1527602	F+DR/	WSO	171/.	153	5166	96363	99F=P	11/	MCL		1225
	DATA	YSOI	181/ 7		A786236	F+PS/	. 1591	1414.	129	1902	42710	455.00	11/	MOL		1224
	DATA	1991	191/ A	134181	3726621	14201		191/.	326	941.2	72365	115-0	11/	MOL		1221
	DATA	¥50!	281/ A	131606	2581687	F+32/		2311	3821	AULA	32000	145.00	11	MOL		1224
	DATE	10.74	2111 6	777611	9129266	FARAI		2:1/	250	951.1	97312	OAF-D	11/	MOL		1220
	DATA	YEOI	2211 2	951313	1174347	FARAI	WEGI	2211	285	6414	51017	135-0	11/	MOL		1210
	DATA	YSOI	2331.9	17007	SETARIS	F+00/		2311	2100	2699	82884	37F=P	11	MOL		1231
	DATA	YEQI	2011 9	171241	9215365	FARRI	LO	2611	18.1	2134	27536	10F .D	112	MGI		1212
	DATA	YSOF	251/ 9	542330	9937695	FARRI	WEGI	2511	157	AUSC	73130	BIF-P	11	MOL		1211
	DATS	YSOI	261/ 4	68680	2164177	5-22/		2651	131	1316	63263	455.00	11	MOL		1234
	DATA	¥50/	271/ 9	59437	7145671	FARAI		271/	101	PSAR	65830	045-0	11/	MOL		1215
	DATA	4501	2811 0	ROMEST	6512272	FADR/		281/	7470	520	05108	755.0	21	MOL		1234
	DATI	YSSI	201/ 9	05400	COLAZON	FADAI		261/	487	7323	14874	53F=7	2/	MAL		1230
	DITI	VEOL	2011 0		5100020	ELANI	NEO	12311	200	6400	DRUGA	14 38-0	21	MOL		1237
			3. 37 . 4	1710.3.	2370757	LALGI		Sett.	294.	1446	20434	. CLUM		MOL		1230
			AND LE	TCHTC		C		ENDE	TNI		ATTON		Deta	MOL		1231
r		3343	AND AL	201110	ron mic	GAUD	J LL	SCHURE		Lon		UNUL		MAL		1341
	P4 7 4	VLDI	11/ 2	50507	2201204	E-01/					74343			MOL		1241
	DATE	V601	21/7	78207	1000534	5-01/	1400	21/	517	5761	10310	GOE-O		MOL		1242
	DATA	TERI	31/ 1	20043.	1513601	Fabial	DF	11/	SIN	BAAS	11000	BUE - P		MOL		1243
	PATA	Y-31	117.1	0.27700	3334674	E-30/		1 111	2100	1446	12064	BEL-A		MOL		1244
	DATA	NC MI	51/ 7	116475	646/346	E- 60/	1000	51/	FUE	1118	46136	005-0		MOL		1243
	PA7 1	1 1600	11/12	313433	3137673	E-00/		211.	202	1410	43367	10E-0	11	HOL		1240
	1. A . A	16.91	711.7	CITEC	1836846	E-ME/	WEDI	711	4000	2213	CHECT	ELE. 2		HOL		1247
	DATA	ADDI		31142	10-28047	1-33/			404	1707	10100	705-0	.1/	Mai		1040
	DATA	KGOL	01/.3	371971	1000/00P	E-24/	WE GL	011	460.	BCE	20144	1 35-0		HOL		1244
	DATA	AON!	1031 4	715 713	4130302	- 001			4040	1411	00-04	I EL OU	11	HOL		1656
	DITA	J DEL	1011.4	135250	41/01/1	F 03/		101/.	431.	3421	9/16)	141-0		MOL		1251
	DATA	Xont Viel	111/ .7	10001	10000001	L+KN/		111/1	443	1041	2=350	TEE-D	10	MOL		1272
	DATA	1301	12:1,)	066/0	001:374		ANCO	121/.	424		20354	372-0	1/	MOL		1251
	DATA	2001	1317.0		220001		1 PDM	131/#	4150	0000	1/333		11	HUL		1259
	UAI	1961	.41/0	104120	2040340		ANCIES	141/.	1700		54523	00.00	1/	MUL		1255
	ISA IA	XONC	1517.0	73/00.	2/30132	1+561		151/1	3780	8006	15096	4 31.00	1/	-0-		1250
	DATA	XORI	1617,7	Sulle:	1335573	E + MMI	, went	161/.	\$50	1664	61215	But +0	1/	RCL		1257
	0014	xent	1/1/./	55725	1250658	2+80/	,	. / . / .	5461	5960	27249	461.02	1/	MOL		1258
	DATA	xeat	1817.7	266931	3493226	2+P(4/	,	1837.	3190	2121	46165	961=0	17	MOL		1524
	CATA	x60(19)/.8	19537	265 5214	++03/	, +631	191/.	241:	245	15007	HAF-N	1	MOL		1505
	Drie	x631	2411.0	281/1	8-18502	E+BH/	14061	2011.	2751	1222	67499	241-0	11	HOL		1591
	DATA	8666	211/, 8	745190	2263655	C+9.7/	. MON	211/.	2510	3047	76215	215=9	11	MOL		1265
	DATA	Xoat	22)/,8	98516	1061064	2+144/	, neal	icil,	227:	9951	69439	1416.66	11	MOL		1543
	CATA	X64(2337.9	200780	7617762	E+921		231/.	233.	5712	87294	57E=P	1/	MOL		1264
	DATA	XPUL	24)/.9	391060	7611642	E+63/	, W6131	2477.	1763	2006	16105	\$7E=0	1/	MOL		1205
	LAIT	XAPC	2531.9	557220	5563999	E+AA/	. 4981	(25)/.	1255	7461	R59n7	65E=2	11/	MOL		1500
	CATA	×62.(2611.9	607011	8876505	5+313/	. Well	(59)1*	159	7816	64768	IFE-0	11/	HCL		1267
	DATE	X931	271/.2	818572	175259	E+33/		273/,	1664	1755	7:822	65E .?	1/	HOL		1599
	DATA	Xect	28)/.9	A97878	9522222	E+88/	, 4691	[28]/.	7389	731	10334	SHE NO	21	NUL		1566
	DATA	XACI	5011.0	95A46	2511863	E+03/		2471.	4716	2720	92695	35E-P	21	MOL		1276
1.1	DITA	X03(36)1.6	995151	2322743	E+06/		30)/.	565	5811	96527	37E=0	21	MOL		1271
C			1		1.00									MOL		1272
C	8501	SSAS	AND WE	IGHTS	FOR THE	GAUS	S LES	SENDRE	INI	1E GA	ATICH	CRDE	F=61	MOL		1273
C														MOL		1274
	DATA	X61(1)/,2	869666	00000020	E #3/	. #611	\$ \$2/.	5198	8111	01087	862.08	1/	MCL		1275

PIN-	40	2	CI FGFN	74/04/00	20.11.01	P19KF972:10	PACEN	10. 24
	DATA	X61(21/.51056905707	074E-01/, +61(2)/.510144870	32697E-01/	HOL	=
		Tax	21. 121 Y0400000		51/. 508:4/636	119-31 1900	101	
	0.1.1	1441	2)/ US/0954025		S)/ SOUCEUDS	081776-01/		
	DATA	×61 .	61/ 25263764716	905E-00/. H61(6)/ 494239853	46734E-01/	NOF	
	DATA	X61 (751. 30171062096	Se'SE-001, #610	71/ 027005559	56410E-P1/	HOL	
	DATA	×517	81/ 34999644220	130F - 00/ . Holl	6)/.478506765	65095E-01/	MOL	14
	CATA	1948	911. 39736915472	575F-28/, W611	91,468747587	50808E=01/	HCL	
	DATA	X6: (12)/. 203705176550	353E-00/. W61 ()	18)/. 4577714AB	531452-01/	NOC	
	DATA	Xett	11)/. 45858362226	223E-00/, 461()	11)/.445671920	35P83E-31/	MOL	-
	DATA	x61(121/.53278662650	0194 * / 00+326G	121/ 432268:18	124956-01/	HOL	
	CATA	X610	131/ 57529965135	AB3E+ PR/, H61()	131/ 417807477	40336E-01/	HOL	-
	DATA	X61	147/ 61031178519	7922480/, 461()	41/. 482256825	40998E-01/	MOL	
	DATA	191	1517.05571665209	07E+03/ . WOIC	151/. 355656/36	1100/E-01/	100	
	DATA	191	101/ 093/093409940	1445+63/,461(101/.366650504	/100-10C152	101	
	DATA	X61(171/ 72929012304	46E 42.7/, ×61()	171/ 349454975	155352=01/	MOL	-
	TATA	1104		315+88/,4810	177. 332805762	129876481/	10	
		× 4 4 7	1717 P35 182 234 121		171 . Jeyoon	201227/2011/		
		****		555 + 991 - WALL	011/ 2466100A5	201515-01/		
	DATA	X61(221/ 87845323721	PAE+23/ H61(2	221/ 204024671	87544E-01/	HOL	
	DATA	X61C	2311.93172916247	179E+201. W61(2	231/ 22079273:	483195-01/	TOP	-
	DATA	X61 [24)/, 92262253138;	295E+001, W6102	243/ 195950777	463018-01/	MOL	12
	DATA	X61 (25)/, 941 . 6698068	136E+00/, W61(3	25)/.172662929	876135+81/	NQ.	
	DATA	2611	26)/. 95714213191	2925+03/, V61(c	6)/. 147898655	009585491/	TOM	
	DATA	XAIL	261/ 98157601128	10 4F+53/ . H61 [2	1	BAENSE BAAN		
	DATA	XelC	2931 9981 3674523	51E+90/ . 461 (2	00) / 715235049	1749PE= 2/	NOT T	
	DATA	×610	30) 9959765981	5116+20/. +6101	1211.456092488	60124E-02/	HOF	-
	DATA	X61C	31)/, 99923559763	136E+27/, woll]	51)/.196105336	167035-02/	MOL	
C	-					101 00000-13		
	· ADOCI	CACC	AND ACTORIA LON	THE MAUSS LEVE	TORE LAILONAI	TON ONOCHERS		
	. DATA	1648	11/ 25120251421	920F - 91 / - XAVI	11/ 502490023	TESSEFLET		
	DATA	X 52(23/ 75324395496	14E+01/ #62(2)/. 501210695	69842E-81/	MOL	
	DATA	129×	31/. 12532922361	998E-001. 4621	311.448675285	94951E=01/	MOL	
	CATA	X62(437.17591765920	901E-00/, 462(43/ 494858179	19698E-01/	NOF	-
	DATA	X621	5)1.22426358569	16E-32/, +62(5)/, 489854962	27517E-01/	HOL	
	DATE	129X	611,27294320269	572E-201, W621	6)/. 483552379	63477E-01/	HOL	11
	DATA	X620	71/ 32893354159	10E-FO/, 162(711.476848381	BUIPPE-01/	MOL	
	DATA	X62(87/ 36811277534	556E-037. W620	53/. 467341684	78414E-01/	MOL	-
	DATA	195	A)/ #1457252571	12t=00/, wh2(ay, as as as as as a s a s a s a s a s a s	145695=01/		
		1001	111 40760702010101010101010101010101010101010101		1)/ ATASAL 107	SAGUTE-GI		
	DATA	129X	121/ 54617666630	25E+80/ HA2(1	2)/ 420974844	18384E-01/	MOL	
	DATA	X620	131/ 55776644795	584E+801, #62()	31/. 486645286	82417E-01/	HOL	
	DATA	X621	14)/, 62767128841	BBE+681, #42()	1431, 391285317	51962E=01/	HOL	11
	DATA	X62(1511.66579250:33	548E+00/, #62()	151/ . 37:93A925	62279E-01/	HOL	
	DATA	X621	1611.70262149222	227E+00/ . ++2()	163/.357645496	227685-81/	MOL	
	DATA	×621	1711.73718952528	\$155+001, what 1	17)/.330448443	70410E-01/	MOL	
	DATA	X 521	183/ 77043859635	542E+39/. #62()	181/ 320304005	81624E-01/	MOL	11
	DATA	Xept	141/. 87154134010	5975448/.462(5	1911, 330530225	73980E-01/	NOL	
	04 · A	X420	227/ 82056933568	197E+90%, NOZ(2	201/ 279907281	63314E-01/	Mar	
	DATA	****	16163- APICO 1133	1001 400/ WASH	11, 10001/2010			
	UAIA	1001	CE11.0022020.002	04545001 10010	21102000010	1,1 000 JC 00 JC		

、

2

.

RUN=107		0				G	LE	GE	N					7	61	54	1	99			Se	. 1	3,	0	3		-	AR	RE	RZ	ZUR	PAGE	NO.	25
D		x	62.	2	3)		97	47	98	112	27	.2	121	OE	4 9	12		-6	21	23	11		11	2	13	22	27	75	78	E .	81/	HOL		1331
D		7.	154	21	4)	1	92	157	47	15	54	.3	62	RE.	+ 8	3.	1 . 1	15	21	24	11		9:	3	19	76	65	*5	73	E =	21/	MCL		1332
D		X	621	2	\$;	1.	90	29	60	49	313	\$ 9 ;	23	SE	+2	13.	1.		21	25	11	. 1	6	121	88	11	79	101	77	E-	21/	MOL		1333
C.	ATE	×	521	2	:)	1.	45	R4	91	11	2	77	19	35	4.	0			21	20	11		4	5 2	61	91	32	36	26	E .	115	MOL		1334
D		X	52:	2	73	1	47	16	ap	17:	3		te	5+		10		-	- (21	31		11	88	73	96	11	13	10	E.	81/	MOL		1335
2	411	y	621	2	2.7	1	38	122	55		19:	-	27	3F	+2	32		15	21	35	11		4	E	57	94	28	42	0;	E.w	92/	KOL		1336
D	A74	x	621	24	5)	1	99	24	29	197	111	18	47	AE	+ 2	P.		-6	21	29	11	1	9		44	19	181	83	AO	F	159	MOL		1317
D			2	3	31	1	QQ	441	102	22	16	111	621	65	+ 12	12	1.	-	11	30	11	1	10	6	33	34	56	23	-	F.	121	MOL		1334
D	274	×	671	3	11	1	39	92	4.3		G	2	87	85		101	1.	-	31	71	21		A	99	24	56	79	51	37	F.	021	MOL		1 3 3 0
e					• •	•						~~ `							- •			• •							- 1			MOL		1 8 4 6
	132	25	24	41	in		F 1	GH	115		n	, ,	THI	5	C. A	115	2	11	-	FN	CF	F	11	T	FG	RA	T T	ON	n	83	FREAT	MOL		1344
												•		-					- 0	-	-	•	•							~ •		MOI		1341
		~	- 11		• •	/	120	A (A 7	100		200	100	201	35		0					21		10		28	4÷	4.2	10	24		211	MOL		1342
		0	531		5.	٠.		15	2 1			1	5	05	- 6			- 4	21		.,	• 7	10.		11	11	81	20	17		211	MOL		4300
0.	4 7 4	÷	121		51	·,•	0.0	7.3	77	54		161		115	- "	1.			21	2	:;	• 7			37	23	03	27	11		041	MOL		1344
		0	121				10	70	22			16		50	- 11	-		12	20	3	:	•]	100		2.1.	53		AF	**		64.	HOL		1343
		÷ 0				·,•		10	00	12		10		15.		101	.*	0		-	::	• 1	101	16	4.4	20	36	100	11		01/	HOL		1340
0.						·,•	14	00	1.4		21		10	11	• *	141.		-	31	2	27	1		36	01		2.7	10	03		e1/	FOL		1347
0		×.	2.5		27		24		40		130		14	35	-	1.57		•0.	5(2	?'	• *	11	0	64	21	15	14	44	2.	01/	HOL		1348
D		×	551		/)	٠.	24	24	44	0		171	12	52	• 1	121			51	7	11	• •	11	50	65	11	32	22	65	E.*	311	MOL		1349
0.	ATA	X	031		5)	. .	33	94	2 -	24	119	17	151	BE.	• 2	0		×6.	3(21	• 4	16	22	21	44	20	55	83	2.	01/	MCL		1350
0.	ATA	×	63		91	. .	58	55	2.0	20	4	1	22	32	- 9	21		-	5 (4	"	• 1	:51	54	17	47	81	55	42	E.	61/	FCL		1351
D	211	X	531		3)		43	Ne	83	574	e	19	55	11	• 7	191		•6.	3(16	21	• 4	146	54	56	55	52	59	41	E	91/	MOL		1352
. C.	ATA	×	630	1	13	· .	47	47	87	2'	174	19.	18	25	• 9	3		45	3(11	21	. 4	133	5.9	77	70	06	32	7.5	٤٠	611	MOL		1353
ית	474	X	630	11	5)	/ .	51	1;	26	551	32	9	22	3E	+ C	19		-	5 (12)/	• •	12	25	53	45	85	65	15	2.	511	MOL		1354
D	ATA	X	650		3)	ι.	55	,94	03	141	91	10	62	9E	+2	101	•	\$6.	3(15	31	. 4	111	13	96	45	75	95	66	E•	611	MOL		1355
D	414	X	631	11	0)	1,	59	197	6.3	19.		57	751	SE	+ V	4		n D.	3 f	14	21	. 1	\$9	58	79	95	89	13	44	E.	e1/	MOL		1356
D	111	X	651	11	5)	/.	63	85	47	110	358	52	1.5	65	+6	10,		Nb.	3(15	:/	. 3	586	31	22	67	58	43	49	E #	211	MOL		1357
D	ATA	X	631	11	D)	1.	6!	50	22	25;	26	11	491	BE	+ 4	151		*6	36	16)/	. 3	361	00	33	70	88	54	57	E۹	71/	MOL		1358
L.	414	X	631	1)	7 ?	1.	71	14	44	:3:	995	58	19	12.2	+ 6	2.		ić.	5 (17	:/	•]	54	16	52	16	60	53	55	۰3	01/	MOL		1359
D	ATA	*	031	11	2)	1.	74	153	2:	:64	6	31	78	ΞE	+ 6	10.		NO.	31	18)/	. :	350	76	20	34	88	37	79	٤=	21/	MOL.		1360
D	474	X	631	11	9)	1.	77	73	8	21	20	99	83	7 E	+ P	101	1 .	ND.	3 (19	11		51	11	8:	16	62	22	19	E =	011	MOL		1361
D	114	x	631	21	P)	1.	R.2	175	35	40	15	77	24	51	• 6	10/			3(22	:/		291	17	63	47	56	82	63	E.	21/	MOL		1362
. 01	ATA	X	631	12	11	1.	83	57	11	555	4	51	94	9E	42	P.		-	3 (21)/		271	16	65	74	35	90	97	EΨ	211	MOL		1363
D		X	531	2.	21	1.	64	1 A	44	44	2	6	41:	3S	+ 2	PI	121	16	3 (22	11		151	16	86	26	55	33	45	E=	119	MOL		1364
D	ATA	×	631	2	3)	1.	88	58	78	32	.8	50	78	5E	+ 8	PA,	1,1	Ke:	3:	23	:1		22	74	92	71	00	48	96	E.	21/	MOL		1365
5.		x	631	21	43	1.	98	177	24	30	121	77	55	3E	+ 2	PA A		- 0	31	24	31		0	15	37	61	25	80	39	E۰	21/	NOL		1365
0.	ATA	X	530	15	51	1.	92	73	60	99	19	50	18	4F	+?	3	1.1		3 (25	11	. :	8	50	74	63	16	21	61	E .	01/	MOL		1367
D		X	630	21	61	1.	92	47	26	13	44	44	18	RE	+ -			-	3 (25)/	. 1	6	21	58	78	41	23	38	E.	21/	NCL		1368
D		x	631	2	73	1.	05	97	79	12:	:01	151	44	3F	+ 6	0/			31	27	31		31	36	46	12	61	61	15	E .	P1/	MOL		1369
D	ATA	X	631	2l	85	1.	97	20	84	191	54.	.4	75	7 F.	+ 2	P.		.6	31	35	31		11	51	93	76	27	68	88	E.	113	MOL		1378
E.		X	430	24	0)	1.	99	25	35	ó	(15	10	37	2E	+ 2	21		-6	31	29	>/	. 5	112	5	96	86	76	32	65	E -	156	MOL		1371
D	414	x	630	3	3)	1.	99	137	28	154	h	30,	210	QE	+ (10		Nh:	31	30	11		7	N	29	17	65	96	01	E .	157	MOL		1372
D	ATA	X		3	1 7	1	99	0.2	24	21	2:	7	79	7 F	+ 0	2.		16	31	31	11	1	12:	H	52	83	46	44	37	F .	150	MOL		1373
D		Y	631	1	21	/	99	197	82	10	40	121	11	25	+ 0	R			11	32	21		P	9	87	45	05	57	71		071	HOL		1374
C.																				~					~.				••			10.1	*	1275
C					ND	-	1. 1	GH			:05		THE	5	C 4	115	2 4	1.		FN	-	F		TI				ON	0	80		MOL		1376
	301		AC	~	-12		- 1	un			-			-		i) i		-		C. 14	LA	-	• •		- 0	~~	••				- 4-04	MOL		1279
		¥	6.0.0		• •	,	20	115	22				12	LF	- 2			-			11	,			20	5.7	OP		7.0	F.e	21/	FOI		1378
		ç	640		21		7 3	100	2.0	20	7 .	17	70	S.F.	- F			-		2	12		E	. 71	50	67	1.0	11	52		61/	MOL		1370
		ç	Lh .		3 1	,*	1 2	114	21	A				25	-0	1					1	17		14	17	62	21	10	14 2		01/	MOL		1784
0		ŝ	() () () () ()		4.1	,"	16	14	1.1	10	221	12	101		- 2	0		46		3	1	•	170	100	17	AB	50	-0	5.4		A1/	Mint		1 1 8 4
		Ň			1.1		21		21		127	14	10	4.6	-0					5	::	• 7			01	45	7.	115	20		01/	MOL		1301
		A U	541		11	;*	21	44	5 1	11.4	2	3,31		75			!		11	1	:	• ;		46		07	F 4	10	27	F -	91/	HOL		1302
0.		~			7 3		24	1 1	21			-0-		1 E	- 0	14	.*	101		4	1	• *	1	20	1.7	04	E P	17			012	MOL		1303
Di		*			11		23	13					E	1L		101				1	1					40	20	13	14			HOL.		1304
51	A I A	. X	- 41		0)	1.	35	112	6.	11	0.	1.1	0	1E	٩ę	21			4(e	11	. 1	151	44	10	21	45	14	17	2.8	01/	PUL.		1385

RUN-107	0	GLEGEN	76/84/89	20.13.03	PARKERZZUR	PAGE	ND, 26
DAT	4 X64(9	1.40227015795	399E-80/, 8641	9)/.44594558	163755E+01/	HOL	1386
DAT	1 x64(19)	1.44636601725	546E-00/. H64(01.43583724	5293231=01/	MOL	1387
DAT	A X64(11)	1. 48940314570	785E-PP/, W64(11)/. 42473515	123653E-01/	MOL	1388
DAT	A X64(12)	1.53127946401	989E+081, +64(2)/.41262563	242623E-01/	MOL	1389
DAT	A X64(13)	1.57189564628	263F+PC/.+64(3)/. 39953741	132720E+01/	HOL	1398
DAT	A X64(14)	1.61115535517	239E+03/, #54(4)/. 3855#153	178615E-81/	MOL	1391
DAT	A X64(15)	11.64896547125	465E+201, N64(5)/. 37055128	540239E-01/	MOL	1392
DAT	A ¥64(10)	1.68523631305	423E+801, +64(61/.35472213	256882E=#1/	MOL	1393
DAT	A X64(17)	1.71998165217	161E+20/. W64(737.33885161	837141E-01/	MOL	1394
DAT	A X64(15)	1.75281998726	853E+88/. +641	817.32057928	1548511-01/	MOL	1395
DAT	A ¥64(19)	1. 78397235894	334E+80/ . WE41	91/. 38234657	872402E-01/	MOL	1396
DAT	A X64:20	1.81326531512	2746+001. +646	2611.28339672	614259E=01/	MOL	1397
DET	A X64(21	1.84062929625	2575+00/. +641	21)/.26377469	715054E+01/	MOL	1398
DAT	A X64(22)	1. 1.6599939815	407F+00/ . +641	2)/.24352702	568711E-01/	MOL	1399
DAT	A X64(23)	1.88931544599	511E+80/. W64(31/.22270173	608383E-01/	MOL	1488
DAT	A ¥64(24)	1.91952213707	850E+001, 464()	4)/.20134823	15353RE+01/	MOL	1481
DAT	4 X64(25)	1.92950917213	193E+00/, W64(251/.17951715	7756971-01/	MOL	1402
DAT	A X64(25	1,90601137485	A39E+00/, W64(26)/.15726030	476024E-01/	MOL	1403
DAT	A X64(27)	/. 9610P879965	205E+00/. #641	27)/.13463847	896718E-01/	MOL	1424
DAT	A X64(25)	1.97332682778	991E+03/, W64(2	81/.11168139	460131E-01/	MOL	1485
DAT	A X64(29)	/. 98333625388	462E+PR/, W+4(29)/.88467598	263638E-92/	MOL	1486
DAT	A X64:30	1, 90171337167	674E+001, W64(50)/.65944579	689783E=82/	MOL	1437
DAT	4 X64(31	1,99:34011677	195E+30/, W64(51)/.41478332	685624E-02/	FOL	1488
DAT	A X64132	1.99938584173	576E+00/, +641	2)/.17832807	2169648-02/	MOL	1469
C						MOL	1418
C ARSC	ISSAS AND	WEIGHTS FOR	THE GAUSS LEGE	NDRE INTEGRA	TION ORDER=80	MOL	1411
C						MOL	1412
DAT	A X89(1)	1,19511383256	794E-01/, 880(1)/.39817813	656386E+91/	MOL	1413
DAT	A X6P1 2	1.55534437152	421E-81/, WR91	2)/,38958395	952769E=01/	MOL	1414
DAT	A X38: 31	1.97468398441	584E-P1/, NBMC	3)/.38839651	059051E=01/	MOL	1415
DAT	A X50(4.	1.13516402280	914E-04/, N801	4)/.38661759	774076E-01/	HOL	1416
DAT	A XBRC 5	1.17471229163	2651-001, +840	5)/.38424993	006959E-01/	MOL	1417
DAT	A X80(6)	1.21299450285	767E-98/, #801	6)/,38129711	314477E-01/	MOL	1418
DAT	A XBBC 7	1,25095235839	227E-00/, W80(73/.37776364	362001E-11/	HOL	1419
DAT	A X82(8:	1.2885280548A	451E-00/, #80(8)/.37365490	238730E-01/	MOL	1428
DAT	1 X801 9	1.32566437374	710E-001, N801	9)/.36897714	638276E=01/	NOL	1421
DAT	A X39(10)	1,36239475349	949E-02/, 469()	0)/,36373749	905835E=01/	MOL	1422
DAT	A X60(11)	1.39839348588	1976-00/, WA3(1)/,35794393	953415E-01/	MOL	1423
DAT	A X80112	1.43387537083	175E-60/, WAR()	2)/.35160529	044747E-01/	MOL	1424
DAT	A X58(13)	1.40869001517	854E-001, #88(1	3)/.34473120	451753E-01/	MOL	1425
PAT	A XBO(14)	1.57280411188	678E+PR/, #PP()	41/,33733214	984611E-P1/	MOL	1426
DAT	4 XAR(15)	1.53614592089	713E+00/, #80()	51/.32941939	397645E=P1/	MOL	1427
DAT	A XBP(16	1.56867126812	27PE+NO/, WBO(6)/,32183498	673487E=01/	MOL	1428
D≜T	A X80(17)	1.60333062282	975E+00/, WBU()	731.31217174	188114E-P1/	MOL	1429
DAT	A XBP(15)	1.631975773:4	687E+99/, #88(1	8)/.30212321	759557E=21/	MOL	1430
DAT	A X50(10	1/.05085989898	6126+00/, NBA(9)/.29288369	583267E=@1/	MOL	1431
DAT	A X80(20)	1,68963764434	282E+02/, W80(201,28259816	057276E-01/	NOL	1432
DAT	4 x89(21)	1,71736518536	21HE+AR/, WADCE	1)/.27186227	500486E=01/	MOL	1433
DAT	A X80(22	1.74400029758	36PE+HP/, H8P(2)/.26075235	767565F=P1/	FOL	1434
DAT	A X80(23	1.76950242013	SOUE+PP/, WEUL	2337.24922535	764115E-01/	MOL	1435
DAT	4 XAU(24)	1,79363271758	4+0E+00/, +8812	4)/,23731882	865930E-01/	MOL	1436
DAT	A X88(25)	1,81695413668	140E+00/, WRO(511.22535090	246332E=01/	HOL	1437
DAT	A XAP(26	1.83883147358	#25E+#0/, HEB(2	42844212.1(6	115782E-01/	HOL	1438
DAT	A X80(27)	1.85943148666	311E+P8/, W8012	737.19954618	878142E-01/	MOL	1439
DAT	A X80(28)	1.67872256767	821E+00/,+8P()	28)/.18626814	208299E-01/	MOL	1448

DATA X80(29)/,89667557943877E+00/,W80(29)/,17274652036269E+01/ + DATA X80(30)/,91326310257175E+00/,W80(30)/,15896183583725E+01/ + GATA X62(31)/,92045967717244E+00/,W82(31)/,14493508040509E+01/ + DATA X80(32)/,94224276110967E+00/,W82(32)/,13068761552401E+01/ +	Int	
DATA X50(30)/,91326310257175E+00/,WP0(30)/,15896183583725E-01/ DATA X62(31)/,92045987717244F+00/,WP2(31)/,14493508040509E-01/ DATA X60(32)/,94224276130987E+00/,W60(32)/,13066761552401E-01/		1441
5414 X62(31)/,92845987717244F+00/,WP2(31)/,14493548048549E=01/ P C414 X84(32)/,94224276110987E+00/,W82(32)/,13468761552401E=01/ P	POL	1442
DATA 180(32)/,94224276110987E+00/,W80(32)/,13068761552401E-01/	HOL	1447
	HOL	1444
DATA XAU(33)/. 95459276634363E+02/. NB2(33)/.11624114120798E-01/ P	HOL	1445
DATA X83(34)/.96548508994386F+98/.668(34)/.10161766841103E=01/ P	HOL	1445
DATA X83(35)/.97498914058572F+00/.580(35)/.86839452692607E+02/	ACL	1447
CAT4 X89(36)/.962848572738632+80/,Wen(36)/.71529847681172E-82/	POL	1448
DATA XR0(37)/,98929130249975E+EP/,W88(37)/,56909224514831E+02/	HOL	1009
DATA X80(38)/.99422754096568E+02/. N80(38)/.41823131246948E+02/	HOL	1056
DATA X87(39)/.99764986439823E+00/.+80(39)/.26635335895127E+02/	HOL	1451
DATA X80(40)/.999553822651621+00/.W60(40)/.114495000318691-02/	HOL	1452
C	NOL	1453
CANALABSCISSAS AND WEIGHTS FOR THE GAUSS LEGENDRE INTEGRATION ORDER=96	TOP	1454
C	HOL	1455
DATA X96(1)/, 16276744849603E-01/, N96(1)/, 32550614492362E-01/	MOL	1450
DATA X96(2)/, 48612565136859E=21/, M96(2)/, 32516118713868E=01/ M	MUL	1457
DATA X96(3)/.81297495464425E-01/.896(3)/.32447163714064E-01/ P	OL	1458
DATA X96(4)/.11369585011967E-F0/.896(4)/.32343622568575E-61/ H	HOL	1459
DATA X96(5)/.14597371465498E-00/.896(5)/.32206284794030E-01/ M	IDL	1468
DATA X96(6)/.17889658236762E=00/.896(6)/.32034456231992E=01/ P	HOL	1461
DATA X96(7)/.210031310460575-00/, w96(7)/.318287586944125-01/ P	HOL	1662
DATA 196(R)/.24174315616384E-PR/, N95(8)/.31589330770726E-01/ H	MOL	1463
DATA X95(9)/.27319681259105E-00/.096(9)/.31316425596861E-01/ M	HOL	1464
DATA X96(10)/. 30436494435449E-00/. h96(10)/. 31010332586313E-01/	HOL.	1465
DATA ¥96(11)/.33520652289262E=00/.896(11)/.30671376123669E=01/	JON	1466
DATA X96(12)/.36569686147231E=00/.496(12)/.30299915422827E=01/	HOL	1667
EAT4 X96(13)/. 355/97649828915-00/. 896(13)/. 298963441363285-91/	101	1068
DATE \$96(16)/. 42507F95845730F=68/. W96(14)/. 2946106095#1678=01/	-01	141.9
DATA X44(151/.4507074/216774F-00/.56(15)/.20594614150555F-01/	IOL	1479
DATA X96(15)/.46345797392859E-22/.896(16)/.28497411865885E-01/	DL	1471
DATA 496(17)/ 51169317715466F+00/, W96(17)/ 27570007616848F=01/	101	1672
DAYA X96(16)/ 53932816832436F+00/, W96(18)/ 27412962726029E-01/	101	1473
DATA X96(19)/ 56551041856139F+02/. 696(19)/ 26626866725591F=01/	Ine	1070
DATA X96(20)/ 59393236477757F+90/, 896(20)/. 26212340735672F-01/	IOL	1075
DATA X96(21)/.61892584012547E+00/.096(21)/.25570036005349E-01/	101	1276
64T4 296(22)/.64416342376496E+62/.896(22)/.24920633222483E=01/	Int	1477
DATA X96(23)/.66871531804391E+22/.696(23)/.24204841792364E-01/	101	1478
DATA X96(24)/.05256453564217E+04/.096(24)/.23483399085926E-01/	HOL	1475
DATA X96(25)/.71567681234897F+00/.W96(25)/.22737269658329F-01/	IOL	1452
DATA YS6(26)/ 73603054374447+420/ 496(26)/ 21966644438744F=01/	IOL	1481
0414 ¥96(27)/ 759602341176655+20/ #96(27)/ 211729398921915-01/	101	1683
CATA \$96(28)/.78236584386743F+58/.096(28)/.20356797154333E-81/	101	1483
DATA X96(27)/ 82030674013514F+00/ W96(29)/ 19519061140145E-01/ M	IOL	1055
0414 ¥95(30)/ 81943231213792F+00/, W96(30)/, 18659479627411F-01/	101	1485
DETA Y46(31)/ 83762351122815F+00/, 856(31)/ 17782502316845F=01/	101	1486
DATA Y96(12)/ 65495903343460F+00/, 596(32)/ 16685479564245F-61/	101	1087
hata yok 131/ A71384535900296400/, wgk(331/ 150705620025626.001/	101	1483
DITA 296(30)/ RANFOUS1740241F+RU/, WOR(14)/, (SH387710240057-01/	101	1450
DATA 206(35)/ 0014666351565F+70/, W06(35)/ 1000001777515F+01/ F	CL	1490
DATA 196(36)/ 915071424123906+PD/ 896(35)/ 141282295660516-01/ M	TOL	1491
DATA Y96(37)/ 927712456722316+03/ 405(373/ 321516066710836-01/ W	10	1293
DATE Y96(38)/ 039370339752754-20/, 496(35)/, 11621626038385-01/	SOL	1401
DATA X96(39)/ 95032717765435+80/. 896(39)/ 16160778555008F-81/	ICL	1404
DATA \$96(40)/.9596622144874E+\$0/.896(40)/.4145671230763E+62/ M	IOL	1495

	RUN=107	0	CLEGEN	76/84/09	20.13.05	PARKERZZUR	PAGE	NO.	28
	DAS		14111 9411248280	61235+981.0061	411/ B120876	82549475+82/	POI		1 4 0 4
	DAT	A YGL	(421/ 6750101745	A5135+00/. 4961	1211 700×170	70:15186-02/	MOL		100
	DAT	AOY ST	(43)/ 0525172635	AZCIFARAL WOLL	ATT ADERLAS	50423505-32/	* 71		1 4 0
	DA	A VOL	14411 00836412-1	20635.001.00.1	4317, P033343	7/2027-5-02/	NOL		1 4 4 4
	DA T	A VOL	""5" / 003 "/ 103A1	22766 . SHA	451/ 10-466/	TIRHAHLE-DO/	MOL		15.0
	DAS	A YOL	(AL) CESORIANZO	B7306100/ +06	441/ 3013771	S1701405-62/	MOL		1500
	DAT	A 704	1471/ 0623647755	ATTAFABRI LOLI	1711 ALZCAL	765000000000000	MOL		154
	241	A VOL	(JA)/ 0034805018	B1275.99/.496/	CR1/ 7647030	LEGE2315-01/	MOL		150
	r	- 140	(-0)/	10323-1107 (+ 101		03332012-13/	MC		152
	~ · · · · · · ·						MOL		150
10	T1-1	B-41/	2 0				MOL		150
: 4	12=1	BAASI	3 0				MOL		1561
17	151	DT-11	53.76.10				MOL		1501
22	10 1571	DI CT	60100 TC 22				HOL		1500
26	10=1	OT AND	1/4+/187+13/2+1				MOL		1511
12	60	0 10	17-4(10/141)/2-1				MOL		1511
28	20 TECH	DT NF	AA AND NPT NE.	ALGO TO 50			MOL		151
43	10=1	395		0700 10 30			MOL		151
43	15/1	PT FD	8411=31648				MOL		151
46	30 N2=1	NPTAI	1/2				MOL		151
46	11=1						MOL		1514
46	12=	PT					MOL		1511
52	00 4	18 1=1	. N2				HOL		1511
62	XPTI	11)==	X(IC)+T1+T2				MOL		1510
62	XPT	12:=X	ST+11+12				MOL		1520
62	HTI	11)=#	(IC) # T1				MOL		152
62	WHT	121=W	H1(31)				MOL		1522
52	11=1	141					MOL		152
62	12=1	2.1					MCL		1524
62	40 10=1	C=1 -					MOL		1524
100	RET	IRN					MOL		1526
161	58 WPI1	116.5	2) NPT				MOL		152
	60 FORM	ATTIM	2.50Hatatt WARNI	NG. GAUSSALEGE	NORE RECUEST	ED WITH NPTH	MOL		1521
	1 161						MOL		1520
511	NPT	1					MOL		1530
113	TO YPT	11=12					MOL		153
113	WHT	11=2.	ReT1				MOL		153
117	RET	IRN					MOL		153
117	ENG						MOL		1534

	RUN=1	07	0		75/84/89	26.13.03	PARKERZZUR	PAGE	NO.	2
		FUNCT	TON PLHC	L. MM.X3				MOL		1535
	C							MOL		1536
	C							POL		1537
	C	PURPO	SE					MOL		1538
	C	COMPL	TES NORM	ALIZED ASSOCIA	ATED LEGENDRE	POLYNO, ILLS	BY RECURSION.	MOL		1539
	C							MOL		1540
	C	DESCR	IPTICN D	F PARAMETENS				POL		1241
	C	P* 9	MAGNETI	C QUANTUR NUM	SER.			not		1542
	C	L.	SUBSICIA	RY GUANTUM NUT	ARER.			MOL		1543
	C	Xe	COSINE C	THETA.				MOL		1504
	C.							1.0		1545
	C	SUBRO	HITTNES A	NO FUNCTION SU	JOPROGRAMS REC	UIRED		MUL		1500
	C	N	INE.					HOL		1547
	C							FOL		1264
	2	TNI AC	C033 411			ELIT TAL		HOL		1244
	-	IN PL	DUN TE L	DEMAL TTER TO	A DH L-L L	CHITCH.		TOL		1330
	-	TALM	PIN 15 N	WERE MODIETE				HOL		1251
		PRUGE	AM UP He	NERF FUDIFIEI	DT S, GREEN			HOL		1226
	C							MOL		1223
10	r	MEIAC	SLUMJ					HOL		1555
	-	COMPI	TE CENEO	AL PACE BY DE	UESTON UPWART	TA TH L AND	ACRASS TH M	HOL		1222
	č	COMPS	HE BUILE	AL LAST DI ALI	CONSION OF MARI		ACK003 14 1.9	HOL		1557
	10	EODMA	T. 1 H	HAAAA FEDAD	POINENT OUT	E PANCE END	PINC. DTA	HOL		1554
	1	5	E21 10	. TH 1 1	CON CON CON	A READE FOR	FUNCIELD	HOL		1550
	r	•	1001014					MOL		1560
11	20	YI =FI	DATEL					MOL		1561
12	6.0	TEIM	GT I OP	1 17.0360 10	D D			MOL		1547
31		Diti	Fia				1	HOL		TEAR
21		UD=X						MOL		1560
21		TELL	FO 8160	10 49				KOL		1545
34		00 30	7=1.1	10 65				HOL		1566
31		VISFI	DATIT					MOL		1547
31		P1=((2 FOATA	1 Falex+P2eXT	PILITAL FR			MOL		1568
31		PI=PZ	C.LOFA.	second cher bene				MOL		1549
21	30	PZ=PT						HOL		1570
43	24	TECH	FD 0160	TO 68				MOL		1571
		*****						MOL		1572
	č	AT EN	D 75 100	P PIZPEL . R. XI				MOL		1573
	r							MOL		1578
45	-	TELAP	S(X).GT.	1.03WRITE(6.1)	DL. MM.X			MOL		1575
65		ZESGR	TCABS(1.	E2=Y+X))				MOL		1574
70		IF(Z.	GT.1.E=6	IGO TO 48				MOL		1577
	С							HOL		1578
	C	IF Z=	D, THEN	X=1 AND PLM(1.	J=D FOR M.GT.	8.	r	MOL		1579
	C							MOL		1588
99		PLAS	ER					MOL		1581
99		RETUR	N					MOL		1582
3;	40	P2=()	L+1.EP)+	(P2-X+P1)/2				HOL		1583
87		00 50	1=1.H					MOL		1584
95		XI=FL	OAT(I)					MOL		1585
35		P3==2	.E.0+X/2+	P2+XI=:XL+X1)	(XL-XI+1.E0)	PI		MOL		1588
35		P1=P2						MOL		1587
35	50	22=P3						HOL		1588
	C							MOL		1589

N33330555555668 N333305555547666 00 RUN-187 6 xNOR+*(2,EA*XL+1,L0)/2.E0
IF(*,LE.%)GO TO 83
IF(*,LE.%)GO TO 83
XLP=xL *.E0
XLP=xL+*.E0
XLP=xLP+*.E0
XLP=xLP+*.E0
YLP=xLP+*.E0
YLP=xLP+*.E0
PL=2*C0PH*(XLM=XLP)
B0 EFTUEN
RETUEN
RETUEN
RETUEN
RETUEN
RETUEN NORMAL IZATION..... END • 10 76184189 . 22.13.83 PARKERZZUR PAGE NO.

۲

.

.

~

169

.

	RUN-1	87 0		76/04/09	24.13.83	PARKERZZUR	PAGE	NC.	1
		FUNCTION	N PEPIN, L. M. ZETA, R.C	OSX)			MOL		1686
	c						MOL		1687
	Ċ						MOL		1628
	c	PURPOSE					MOL		1629
	Č.	EVALL	UATION OF NORMALIZED	SLATER TYPE	BASIS FUNCT	IONS	MOL		1610
	č						MOL		1611
	c	DESCEIPT	TION OF PARAMETERS				MOL		1612
	c	N-PR	INCIPAL QUANTUM NUMB	ER			MOL		1613
	c	L-SUP	ESTDIARY QUANTUM NUM	BER			MOL		1614
	c	7576.	OFBITAL EXPONENT				MOL		1415
	C	8-241	TAL DISTANCE				MOL		1616
	-	CPSY.	COSTNE DE THE ANGLE	THETA			MOL		1617
	r						MOL		1418
	č	SHERDIT	THES AND FUNCTION SU	SPROCRAMS RE	CUTRED		NOL		1619
	č	PIM					MOL		1620
	č						201		1621
	č						HOL		1622
16	•	PEAL NOS	P M				HOL		1621
16		DIMENST	DN FACTIRS				MOL		1476
10		DATE FAC	CT(1)/0 2F1/			1.4	HOL		1625
		DATA FAT	CT(2)/0 24F2/				HOL		1626
		DATA FAL	CT(1)/3 72F1/				MOL		1627
		DATA FAR	CT(4) /8 4032F5/				MOL		1628
		DATE FAL	TTT51/0 36288F7/				MOL		1629
		DATA FAC	TIAL / 4793914F9/				MOL		1630
		DETA FAC	T(7)/2 871782812F11	1			MOL		1631
		CATA FAC	T(A) /# 22922783PARE	14/			MOL		1632
			er en	,			MCL		1611
1.6	-	x = 3 = 1 + 1					KOL		1635
16		NODHAL	3				HOL		1616
10	r	NORTH 1 .	b -				FOL		1434
	-	C 41 C1	ILATE THE NORMAL TAT	TON CONSTANT			Mal		1630
	č .	E 4E C	JEALE THE HUATAGETER	TON CONSTANT			801		1678
21			-1.4				POL		1630
20	10	NOPH-NOR	DWAD BATERA				MOL		46.00
20	10	NDOW-NOT	DUJEARTINS				Nº51		1640
35		NOCH-COL	TEL NODWS				ROL		1041
	~	NURSESUI	RICKURNJ				HOL		1042
	L						HOL		1043
	6	PULT	ITLY AT THE ASSOCIAT	ED LEGENURE	PL'LINUMIAL		HOL		1044
44	•			H CORVA			MOL		1645
41		REFENCION	ISOT DEDEDADAS AND ISOT	, m, cuars			MOL		1040
30		JFLN. GI	"Iluchestchangediamil				NOL		1047
14		REIVAN					HOL		1040
10		END					TUL		1049

RUN-1	\$17	0							761	A4/8	•	29.	13.03		PA	ENF	RZZUR	PAGE	NO.	1
	SU	BROU	TINE	RHO	HOL	(0051		ELCO	EN,	NNUE	.1		,NTI		, XR			MOL		165
	1					SIN		ZNUC		ZN		READ	2 2					MOL		165
C									1.1									MOL		165
C																		HOL		165
C.	PU	RPCS	F.									-	w marts					POL		165
C		THE	CHA	RGE	DEN	SITY	LOS	LIN	EAR	CLO	SED	SHEL	L MOLI	ECU	LES			MOL		165
C																		MOL		165
C	DE	SCPI	PTIC	14 CF	PA	RAMET	EAS											MOL		165
C .		COS	1-00	SINE	OF	THE	THE	TA A	NGL	ES								MOL		165
τ.		ELC	OFN.	MATH	1 X	OF TH	EE	LECT	RON	DEN	BITY	1						MOL		165
C		NNU	C=NU	MBER	OF	NUCL	EI.											MOL		1661
C		TRI	NT=h	IMBE	RC	FHAC	IAL	DIS	TAN	CES								MOL		166
C		NTI	-tide	BER	DF	THETA	AN	SLES										MOL		166
C		XE-	PADI	AL D	131	ANCES			a sure									MOL		166
C		51 V	T=SI	NE D	FT	HE TH	ETA	ANG	LES									MOL		166
¢		ZNU	J=NU	CLEA	RC	HARGE	.5											HOL		166
C		2	NUCL	CV5	PUS	ITION	15											MOL		166
C		IPE	ADER	IF	IT	IS NO	TN	CES	SAR	Y TO	REI	10 IN	NEW I	DAT	*			MOL		166
C																		NOL		166
C	SU	BROU	TINE	S AN	DF	UNCT	ON	SU5P	ROG	RAMS	RE	UIRE	D					MOL		166
5		REP																MOL		1671
C																		MOL		167
C	ME	THOD		-					6				-					MOL		167
C		THE	ELE	CTRD	N D	ENSIT	YI	5 ST	ORE	DIN	ELC	DEN						MOL		167
6												-						MOL		167
C	DA	TL T	0 95	REA	DI	N IF	IRE	1 0 A	3 N	CT E	DUAL	. TC	9					MOL		167
C	CA	RD ;																MOL		167
C		TIT	LE (# 1	IN	COLUM	101 3	FCL	LOW	ED B	Y TH	HE TI	TLE)					MOL		167
C	CA	RD 2																HOL		1671
C		NUM	BER	OF N	UCL	EI												MOL		167
C	CAI	RD 3																MOL		168
C		NUC	LEAR	MAS	SES													MOL		168
C .	CAI	RD a																MOL		105
C		THE	CIS	TANC	ES	BETHE	EE	THE	NUC	LEI								HO!		168
C		THE	DIS	TANC	ES	BETHE	EEN	THE	NUC	LEI								MOL		168
0		THE	DIS	TENC	FS	BETHE	EN	THE	NUC	LEI								MOL		168
2	CAI	RD 5																MOL		1686
C		THE	CHE	MICA	LS	MBOL	5											MOL		168
5	641	RD 6																MOL		168
C		THE	NUC	LEAP	CH	ARGES												MOL		168
C	CAL	PC 7																MCL		1691
τ.		PRT	NCIF	AL G	UAN	TUM N	UMP	FR,S	UBS	IDAR	Y Q!	JANTU	M NUM	BER	, ATI	DH,	SIGN,	HOL		169
C		ATC	K, 08	BITA	LE	XPONE	NT.	COEF	FIC	1ENT	(1)	le Ale	11,41.	, EX	.11	. 3x		MOL		169
C		F18	. 6. 7	F19.	5)													MOL		169
	CI	MENS	ION	XR:1),5	INT()	1.0	OSTC	1).	ZN(1) . Z!	UCCI	J.ELCi	DEN	(NR	INT	,NTI)	MOL		169
	C.T	MENS	ICN	RP(2	123 .	CTHET	(20	,										MOL		169
	01	MENS	101	N5 (4	07.	LSCAR) . K	3148	1,2	ETAS	(413)	.CSC	40,73					MOL		1690
	DI	MENS	TON	11160	C.) .	LUCAR	1) . 4.	0(48	:.2	ETAU	(49)		40,7)					MCL		169
	DI	HENS	ION	NP(2	r),	F(20) . K	P(20	1.7	ETAP	(20)	,CPC	28,51					MOL		1691
	01	HENS	Inv	NA(2	23.	4(20	1.6	8534),Z	FTAA	1201	. CAS	28,5)					MOL		169
	DI	MENS	175	JSIA	r),	15(44))											MOL		1704
	DT	MENS	ION	JULA	Pl,	IU(42	1)											MOL		178
	DI	MENS	104	JP 12	(7),	10(28	15											MOL		1782
	CI	45 115	TON	JA (2	12).	14(22	12											MOL		1781
	51	IENS	ION	LTYP	(4)													MOL		170
	RUN-1	A7	0	RHOMOL	76/04/09	20,13,03	PARKERZZUR	PAGE	ND. 2											
------	-------	-------	--------	--------------------	----------------------	----------------	------------	------	-------	-----										
2.2		DIME	VISTON	STHBCL(20)				MOL	17	8										
22		DIME	NS104	2MA3 (23)				MOL	17	21										
	C							MOL	17	6										
	C							MOL	17	01										
	C							MOL	17	6.										
		DATE	P1/3	,141592653589	18/			MOL	17	11										
		C114	VSI4	:,57879632579	1601			HOL	17	1										
		DATA	IPLU	3/1H+/				MOL	17	11										
		DATA	INEG	/1##/				MOL	17	13										
		DATA	TUR	F/IH /				MEL	17	1										
		DATA	LTYP	(1)/1H5/				MOL	17	1										
		TIC	LTYP	(5)/1HP/				HOL	17	1										
		DATA	LTYP	(3)/140/				MOL	17	1										
		DAT	LIVP	(4)/1HP/				MOL	17	1										
		DATA	TWOP	1/6,253185327	1796/			MOL	17	1										
22		IF()	PEAD.	E3. 8) 60 TO 19	12			MCL	17	21										
	c							MOL	17	21										
	C	+	EAD I	THE NUMBER	OF NUCLEI			MCL	17	20										
	C							ROL	17	23										
23		REAL	15,37	P)				MOL	17	24										
27		ARII	E(6.3	78)				MOL	17	2										
36		REAL	(5,41	BUNNUC				MOL	17	20										
47		WRIT	2(6,4)	30) NNUC				MUL	17	2										
	6							POL	17	21										
	C	*	FAD I	N THE NUCLEAR	PUSITIONS AND CH	ARGES		MOL	17	2										
	5							MDL	17	31										
68		SEAD	15.45	E) (ZMAS(KN), K	NEI, NNUCJ			MOL	17	3										
75		REM	(5.25	G) (ZNUC (KN).K	NE1, NNUCJ			MOL	17	31										
:12		PEAL	15,4	WIISAWSOF(I)'	EI, NNUC;			MUL	17	-										
101		MRII	Flers		tes mures			HOL	17	::										
130		**1 i	2(004)	SPICSTROL())	, IEI, NAUCJ			MOL	17	3										
123		REAL	(3,45)	C) (2 N(1)) 1=2,	ANUL)			MUL	17	30										
1/1		Tem	E10,4	46) (2N(1), 1=6	, NNUL I			HOL	17	31										
207		20						-05	1/	20										
201		ZNUS	1=0.0					HOL	17	3										
201		1.44	r					HOL	1/	-										
261		AMAS	1=0.0	ALAULE				HOL	17											
213		00 1	r 1=1	, NNUL				TUL	17	44										
223		1.514	ZN(1)					MOL	37	4 :										
2.25		700-	JEM- T	53+2-23[1]				MOL	17	44										
223	. 16	75.00	TEMIA	MICC				MOL	57	114										
232		7-0						MOL	17											
215		00 3	2 7=1	NNUE				MOL		111										
245		7-7-	70/ 71	,				MOL												
205	24	THE	-7-7	C X				MAN	17	-										
251	6. 5	WDTT	516.3	6.91				MOL	17	5										
274		00 1	P 1=1	NNUC				MOL	17											
245	10	EFT1	516.3	Q311.7N/T1.7M	45(1) . 7NUC(1)			MO	17	5										
	c	nn1.						POL	17	5										
	c	9	FAD T	N THE NUMBER	OF STOMA TYPE OR	TTALS. NUMBE	RDF	MOL	17	5										
	č		TOMA	TYPE PASIS FL	NETIONS, NUMBER	F FI TYPE OR	STTALS	MDI	17	5										
	c		NO TH	F NUMBER OF P	I TYPE BASIS FUN	TIUNS.		MOL	17	51										
3:1		REAT	15.41	ALNSIG, MASTG.	NPD, SAPI, NSIU, NES	IU. NPU. NBPU		MOL	17	51										
334		HR IT	E16,5	SC) NSIG, NESIG	,NPG,NBP1,NS1U,N	STU, NPU, NBPU		HOL	17	5										

	RUN-107	0	RHOM	9L	76/04/09	20.13.03	PARKERZZUR	PASE	ND,	3
	c							MOL		1768
	C	READ	IN THE IST	A BASIS F	UNCTION			MOL		1761
	C							MOL		1762
343	**	TTEL6.	,513)					MOL		1763
372	×R	TTET6.	,577)(10,10:	1, NSIG)				MOL		1764
157	00	60 1	=1,NBSIG		•			MOL		1765
414	RE	AD(5.	420) NS(1).L	YPE, KS(1), ISIG8, JS()	1), ZETAS(I), (CS(I, J), J=1, NS	T HCL		1766
	16)	C						MCL		1767
453	IF	(ISIG	S.ER. IPLUSI	(S(I)=1	1 A A			MOL		1768
463	15	(ISIG	S.EG.INEGIIS	5(1)==1				MaL		1769
4ET	19	(ISIG	S.FG. IBLN#)	19(1)=0				MOL		1770
473	00	40 1	T=1,4					MOL		1771
475	48 IF	(LTYP)	E.EG.LTYP(L1	1))LS(])=	LT=1			MCL		1772
505	TF	(ISIG	S.EG. IBLAK!	C TO 50				PCL		\$773
577	h F	ITE (6	,439) NS(1),1	TYPE.KSC	1), ISIGS, NS(1), LTYPE, JS(I), ZETAS(I),	MOL		1774
	1	(CSII	. J) . J=1, NS10	;)				MOL		1775
554	Gr	TU 6	P.					MOL		1776
562	50 HR	ITE(6	,560) NS(1),1	TYPE, KSC	I), ZETAS(I),	(C3(I, J), J=1	, NSIG)	MOL		1777
617	60 CC	INTINU	Ĕ					NOL		1778
955	IF	(NBSI	U.FO.0160 TO	100				MOL		\$779
623	WR	ITE(6	, 520)					MOL		1782
626	w R	TTES6	. 570) (10, 10:	1, NSIU)				MOL		1751
643	00	92 1	=1,NBEIU					FOL		1782
650	RE	AD(5,	420) NU(1), L1	YPE, KSII), ISIGS, JS(1	D.ZETAULID.C	CU(1, J), J=1, N3.	I MOL		1783
	101							MCL		1784
787	15	ISIG	S.EG. IPLUSI	(U(I)=1				MOL		1785
717	TF	(15:6	S.EQ.INEG)IL	(1)==1				MOL		1786
723	16	(ISIG	S.ED. IBLNK)	U(I)=0				MOL		1787
727	00	72 1	1=1.4					MOL		1758
731	70 IF	(LTYPI	E.ED.LTYP(L1))LU(I)=	LT=1			MOL		1789
741	IF	(ISIG	S.ED. IELNKIC	C TO 86				HOL		1798
743	47	TTEL6	,432) NU(I),!	TYPE, KUC	I), ISIGS, NS(I), LTYPE, JUC	I),ZETAU(I),	MUL		1791
	1	(CU(I	, J), J=1, NSIL))				MOL		1792
1610	GC	TC 91	a					MOL		1793
1614	80 WR	TTE (6	,562) NU(1),1	TYPE, KUC	I), ZETAU(I),	(CU(1, J), J=1	,NSIU)	MOL		1794
1053	66 CL	INTINU	Ξ					MOL		1795
1956	100 00	INTINU	F					MOL		1796
1956	IF	(NPO.	EQ.0)60 TO 1	40				MOL		1797
1666	K R	ITE(6	, 530)					MOL		1798
1663	r F	ETTE(6.	,578)(10,10:	1, NPO)				HOL		1799
1126	. 00	150	J=1, NAPJ					MOL		1868
1:85	RE	+D(5.	428) NF(I), L1	YPE, KP(I), 15155, JP()),ZETAP(I),(CP(I, J), J=1, NP	D HOL		1801
	1)							MOL		:602
1144	IF	(ISIG	S.ED. IPLUS)	(P(I)#1				MOL		1803
1154	IF	(1516)	S, FQ, INEG) IF	(1)==1				MOL		1864
1168	IE	(ISIG:	S.E.A. IBLNK)	(P(I)=0				MOL		1825
1164	50	110	LT=1,4					HOL		1886
1166	116 1F	(L.TYP	E.EG.LTYPCLI))LP(I)=	LT=1			MOL		1887
1176	IF	(ISIG	S, EG, JBL NA 10	O TO 120				MOL		1808
1540	AR	11416	434)NP(1).L	TYPE, KP(I), ISIGS, NP(IJ, LTYPE, JP(J),ZETAP(I),	HCL		1809
	1	(CP()	, J), J=1, NPD)					MOL		1818
1251	120 KA	ITE (o	560) NP(1),	TYPE, KP(1), ZETAP(1),	(CP(I,J),J=1	, NPO3	MOL		1811
1310	130 00	INTINU	E					MOL		1812
1312	148 00	INTINU						MOL		1813
1215	IF	(NBPU	.EG.8)60 TO	100				HOL		1814

1514 WRITE(6.548) 1517 WRITE(6.548) 1517 WRITE(6.548) 1534 DG 173 I=1, NRDU 1534 DG 173 I=1, NRDU 1544 FEAG(5, 420) NA(1), LTYPE, KA(1), ISIG9, JA(1), ZETAA(1), (CA(1, J), J=1, 1) 10 1 1400 IF(ISIGS, EQ, IPLUS) IA(1)=1 1510 IF(ISIGS, EQ, INEG) TA(1)=0 1414 IF(ISIGS, EQ, IDLNK) IA(I)=0 1420 DO 152 LT=1.4 1422 156 IF(LTYPF, E3, LTYP(LT)) LA(I)=LT=1 1432 IF(ISIGS, EQ, IALNK) GO TO 16P 1432 WITF(6, 432) NA(1), LTYPE, KA(1), ISIGS, NA(1), LTYPE, JP(1), ZETAP(1), JETAP(1), J	MOL MOL MOL MOL MOL MOL MOL MOL	1815 1814 1817 1818 1818 1820 1821 1820 1821 1825 1826 1827 1826 1827 1826 1827 1826 1827 1828 1838 1838 1832 1832
1317 WRITE(6,570)(10,IO=1,NPU) 1334 D0 173 I=1,NPU! 134 PEAO(5,420)NA(1),LTYPE,KA(1),ISIG9,JA(I),ZETAA(I),(CA(I,J),J=1, 1) 1400 IF(ISIG5,E0,IPLUS)IA(I)=1 1510 IF(ISIG5,E0,INEG)IA(I)=1 1414 IF(ISIG5,E0,IDLWS)IA(I)=0 1420 D0 152 LT=1,A 1422 156 IF(LIYPF,E3,LIYP(LI))LA(I)=LT=1 1432 IF(ISIG5,E0,IPLWS)GO TO 16P 1432 IF(ISIG5,E0,IPLWS)GO TO 16P 1432 WITF(6,432)SA(I),LIYPE,KA(I),ISIG5,NA(I),LIYPE,JP(I),ZETAP(I),	MOL MOL MOL MOL MOL MOL MOL MOL	1814 1817 1819 1820 1821 1823 1824 1825 1826 1826 1827 1828 1829 1832 1833 1833 1834
1334 DG 173 I=1,NRPU 1341 PE40(5,420)NA(1),LTYPE,KA(1),IS1G9,JA(I),ZETAA(I),(CA(1,J),J=1, 1) 1440 IF(IS1G5,EQ,IPLUS)IA(I)=1 1414 IF(IS1G5,EA,INEG)TA(I)==1 1414 IF(IS1G5,EA,INEG)TA(I)=0 1420 DO 152 LT=1,4 1422 156 IF(LIVPF,ES,ITYP(LT))LA(I)=LT=1 1432 IF(ISIG5,E0,IPLNK)GO TO 16P 1432 FUTF(6,430)A(I),ITYPE,KA(I),ISIG5,NA(I),LTYPE,JP(I),ZETAP(I),	HOL H	1817 1818 1821 1821 1821 1822 1823 1825 1825 1826 1827 1828 1829 1832 1832 1832 1832 1832
1341 FEAD(5, 42C) MA(1), LTYPE, KA(1), ISIG9, JA(I), ZETAA(I), (CA(I, J), J=1, 10 1 1400 IF(ISIGS, EQ, IPLUS) JA(I)=1 1410 IF(ISIGS, EQ, INEG) JA(I)=0 1420 D0 1421 156 IF(LIVPF, EQ, ITYP(LT)) LA(I)=0 1432 IF(ISIGS, EQ, IPLNK) GO TO 16P 1432 IF(ISIGS, EQ, IPLNK) GO TO 16P 1432 IF(ISIGS, EQ, IPLNK) GO TO 16P	<pre>(1),15169,JA(1),ZETAA(1),(CA(1,J),J=1,NPU MOL MOL MOL ()=L^T=1 6P (A(1),ISIGS,NA(1),LTYPE,JP(1),ZETAP(1), MOL (A(1),ZETAA(1),(CA(1,J),J=1,NPU) (A(1),ZETAA(1),(CA(1,J),ZETAP(1</pre>	1819 1821 1821 1821 1821 1822 1823 1825 1825 1826 1827 1828 1829 1839 1831 1833 1833
1) 1600 IF(ISIGS,EQ,IPLUS)IA(I)=1 1610 IF(ISIGS,EQ,INEG)IA(I)=1 1414 IF(ISIGS,EQ,INEG)IA(I)=0 1420 DO 152 LT=1.4 1422 ISG IF(LIVPF,EQ,ITVP(LI))LA(I)=LT=1 1432 IF(ISIGS,EQ,IRLNK)GO TO 16P 1432 HF(ISIGS,EQ,IRLNK)GO TO 16P	MOL MOL MOL MOL MOL MOL MOL A(I), ISIGS, NA(I), LTYPE, JP(I), ZETAP(I), MOL MOL MOL MOL MOL MOL MOL MOL	1814 1823 1823 1823 1824 1825 1826 1826 1826 1827 1826 1837 1831 1832 1832 1832 1833
16400 IF(ISIGS.EQ.IPLUS)IA(I)=1 16400 IF(ISIGS.EQ.IPEG)IA(I)=1 1414 IF(ISIGS.EQ.IPEG)IA(I)=0 1420 DO 152 LT=1+4 1422 156 IF(LTYPF.E3.LTYP(LT))LA(I)=LT=1 1432 IF(ISIGS.FQ.IPLNK)GO TO 16P 1432 IF(ISIGS.FQ.IPLNK)GO TO 16P	POL POL MOL MOL MOL MOL POL MOL POL	1821 1821 1822 1823 1825 1825 1825 1826 1827 1828 1838 1838 1831 1832 1832 1832
1510 IF(ISIGS,EA,INEG)TA(I)==1 1414 IF(ISIGS,EA,IBLNK)TA(I)==0 1420 DO 152 LT=1+A 1422 ISG IF(LTYPF,ES,LTYP(LT))LA(I)=L*=1 1432 IF(ISIGS,E0,IBLNK)GO TO 16P 1432 WPITF(6,430/SA(I),ISIGS,NA(I),LTYPF,JP(I),ZFTAP(I),	HOL HOL HOL HOL HOL HOL HOL HOL	1821 1821 1823 1824 1825 1826 1827 1828 1829 1839 1832 1832 1832 1832
1414 1414 1420 1420 1420 1422 150 177 1432 150 177 1432	()=L [*] =1 KOL 6P MOL (1), ISIGS, NA(I), LTYPE, JP(I), ZETAP(I), MOL (1), ZETAA(I), (CA(I, J), J=1, NPU) MOL (1), ZETAA(I), (CA(I, J), J=1, NPU) MOL MOL MOL	1622 1623 1624 1825 1826 1827 1826 1827 1828 1839 1831 1833 1833 1833
1420 D0 152 LT=1.4 1422 156 JF(LTYPF,E3,LTYP(LT))L4(I)=LT=1 1432 IF(ISIGS,E0,IALNK)G0 TO 16P 1432 FF(ISIGS,E0,IALNK)G0 TO 16P	()=L ^T =1 (A(I),ISIGS,NA(I),LTYPE,JP(I),ZETAP(I), (A(I),ZETAA(I),(CA(I,J),J=1,NPU) (A(I),ZETAA(I),(CA(I,J),ZETAA(I),ZETAA(I),ZETAA(I)) (A(I),ZETAA(I)	1823 1824 1825 1826 1826 1826 1827 1838 1838 1838 1832 1832 1833 1833
1422 156 JF(LTYPF,ES,LTYP(LT))LA(I)=L*+1 1432 JF(ISIGS,EQ,IRLNK)GO TO 16P 1434 WPITF(6,430/SA(I),IYVPE,KA(I),TSIGS,NA(I),LTYPF,JP(I),7FTAP(I),	()=LT=1 (A(I),ISIGS,NA(I),LTYPE,JP(I),ZETAP(I), MOL (A(I),ZETAA(I),(CA(I,J),J=1,NPU) MOL MOL MOL MOL MOL MOL MOL MOL	1824 1825 1825 1827 1827 1829 1838 1832 1832 1832 1832 1832
1432 IF(ISIGS, EQ, IRLNK)GO TO 16P 1432 WPITF(6, 430/54(I), ITVPE, KA(I), ISIGS, NA(I), ITVPE, JP(I), 7FTAP(I),	A(I), ISIGS, NA(I), LTYPE, JP(I), ZETAP(I), MOL MOL (A(I), ZETAA(I), (CA(I, J), J=1, NPU) MOL MOL MOL MOL MOL	1825 1826 1827 1828 1829 1831 1831 1832 1833 1833
1436 WPITF(6.430)NA(1), TYPE.KA(1), TSIGS.NA(1), LTYPE, JP(1), 7FTAP(1).	A(I), ISIGS, NA(I), LTYPE, JP(I), ZETAP(I), HOL HOL A(I), ZETAA(I), (CA(I, J), J=1, NPU) HOL HOL HOL HOL HOL HOL	1824 1827 1828 1829 1831 1832 1833 1833
	MOL MOL MOL MOL MOL MOL MOL MOL MOL MOL	1827 1827 1829 1830 1831 1832 1833 1833
1 (Ct(T.1).J=1.NPU)	(A(I),ZETAA(I),(CA(I,J),J=1,NPU) MOL MOL MOL MOL MOL MOL MOL	1828 1828 1839 1831 1832 1833
1501 60 10 172	(A(I),ZETAA(I),(CA(I,J),J=1,NPU) HOL HOL HOL HOL HOL HOL	1829 1839 1831 1832 1833 1833
1505 160 WRITELS, 560) NALTH, TYPE, KALTH, TETAALTH, (CALT, J), J=1, NPH)	HCL HCL HCL HCL HCL HCL HCL HCL HCL	1839 1831 1832 1833 1833
	MOL MOL MOL	1831 1832 1833 1834
		1832 1833 1834
	MOL MOL	1633
	HOL MOL	1834
	MOL	10.14
	MOL	1875
		1834
	KOL	1030
	NO1	1057
	NOL NOL	1030
		1037
$\frac{1}{1} \int \frac{1}{1} \int \frac{1}$		1045
		1041
	Prote Prote	1842
ion whether	FOL	1844
F SHM OVER THE STENA DERITALS	ITAIS	1805
		1043
Inti DC 210 Jat-NSTC	HOL	1849
1612 DRB#0.0	Mfri	18/18
	KOL	1840
C SUM OVER THE STOMA BASTS FUNETTONS	TS FUNETTONS MOL	1858
f	Kol	1851
1415 DD 220 1=1. NESTE	Mal	1853
1614 IF(IS(1), 52, 0)(0 TO 210	BOL	1853
1616 KIEJS(T)	MDL	1854
1620 DRAECOD+REPINS(I).LS(I).G. ZETAS(I).RE(KJ).CTHET(KJ))ACS(I.J	AZETAS(1) RE(KJ).CTHET(KJ))ACS(1.J) MOL	1855
IFL DAT(IS(I))	MOL	1856
1658 218 CONTINUE	MOL	1857
165P KT=KS(I)	MIL	1858
1552 220 DRAEDER-REPENSEIT-LACED. P. TETASET, REEKT D. THETEKT DECSET.J	AZETAS(T). RRIFT). CTHETIKE STACS(T.J) HOL	1850
	HOL	1868
C SQUARE THE DEBITALS AND HULTTPLY BY THE OCCUPATION NUMBER	D HULTTPLY BY THE OCCUPATION NUMBER MOL	1861
¢	NDI	1862
1704 230 RHD=PHU+DP3+068+2.0	MOL	1843
1712 IF(NSTU, EQ. 8)60 TO 270	MOL	1864
1713 DC 260 J#1, 15IU	MOL	1865
1714 DR9=P.0	MOL	1866
1715 CO 250 1=1, MOSIL	KOL	1867
1716 1F(IU(I), EQ. 0)G0 TO 240	MOL	1868
1720 KJEJU(I)	MOL	1869

174

•

	R	UN=1	87	0	RHOMOL	76/84/89	20.13.03	PARKERZZUR	PAGE	NO.	5
1722			OPBEC	PB+PEP	NUCITIUCI	.D.ZETAU(1), RR(KJ), CTHET(KJ))+CU(I,J)+	MOL		1878
		1	FLOAT	(15(1))					MOL		1871
1754		249	CONTI	NUE					MOL		1872
:75=			KISK	(1)					MOL		1873
1756		25%	OPBES	RH+REP(NUCIDILUCI	, Ø, ZETAU(I), RR(KI),CTHET(KI)) + CU(I, J)	MOL		1874
2018		266	RHOSE	HO+DRB+	085+2.0				MOL		1875
28:5		270	CONTI	NUE					MOL		1876
	C								MOL		1877
	C		51	M OVER	THE PI OPBI	TALS			MOL		1878
	C								MOL		1879
2015			IFCNE	U.EQ. 9)	60 TC 318				MOL		1888
2017			00 37	9 J=1.1	PO				MOL		1881
05:35			CP9=2	P					MOL		1882
	C								MOL		1883
	č		SI	M OVER	THE PI BASS	S FUNCTIONS			MOL		1884
	c								NOL		1885
2021	-		00 29	9 1=1.h	BPT				MOL		1886
28.22			TECTE	(T).FQ.	8) GO TO 281				MOL		1887
2824			KJ=JP	(1)					MOL		1888
2320			OP8=C	RA+REP (NP(I).LP(I)	.1.ZETAP(T).RR(KJ	1.CTHETCKJ	1)+CP(1.J)*	MOL		1849
			FLOAT	(IP(I))					MOL		1800
2856		280	CONTI	NUE					MOL		1881
2056			KI=KP	(1)					MOL		1802
226.0		290	ORREC	RS+RFP	NPTT1. PTT	.1.TETAPITS. PRIKT	1.CTRETEKT	11+1974(1.1)	HOI		1891
	C		01111-0			tites a try and a	///	11-0. 11001	MOL		1804
	ř		50	HAPE TH	F OPSTELS	AND MIN TTPLY BY TH	HE OCCUPATION	NIMBER	MOL		1805
	-		0.	GRAL II	L GAULIALO	SHD HOLITEL DI H	t offerration	HUMBER	HOL		1804
2:12	-	100			OPDe/ 0				HOL		1070
31:7		510	TETHE	IL EC BY	60 10 150				HOL		1808
2121		310	00 30	G 1minh	PIL				MOL		1809
2122			OPRES						MOL		1077
2121			00 11	Q 7=1.h	RPH				MOL		1900
2120			15/14	(1) 53	ALCO TO 730				HOL		1901
3134			¥ 1- 14	TTT L TE	0100 10 36	1			HOL		1402
3170			ODE	117		-			HOL		1462
1120			UPD-L	RETREF	MALIJOLALI	· LOLLIANLIJORNINJ	JACIMETINA	JJ*LALI&JJ*	HOL		1464
344.18			FOUT	LIALIJJ					HUL		1492
2100		364	LUNII	NUE					MOL		1469
2100			AJEN.			-			PUL		1907
2106		350	URHEL		VA(I)/LA(I)	FIFZEIAA(I), AR(KI	JACIMETINI))=LA(10))	HOL		1469
12214		340	CONT	HITTURE	UKHA4.0				MUL		1464
2221		330	LUNII	NUL					PUL		1410
2221		300	ELLUE	NUIRRAU	17]=8707180	1-1			MOL		1911
2232			REIUN	N					MCL		1912
	5								MOL		1913
	C								NOL		1914
		370	FORMA	T(40H					MOL		1915
			1 484						MOL		1916
		368	FORMA	TEIME.3	R, GHATOM, 5)	A 12HZ-COORDINATE,	5X, ISMATCHIC	WEIGHT,	MOL		1917
			15x.14	HNUCLEA	R CHARGE)				MOL		1918
		345	FORMA	1(14 12	x, 12, 7X, 3F	4,9)			MOL		1919
		400	FORMA	T(140,2	INTHE NUMBE	R OF NUCLEI , 3X,	19)		MOL		1926
		410	FORMA	7(815)					MOL		1921
		422	FORM	T(11,A)	. 11, A1, 2X.	1, 3X, F10, 6, 7F10, 5	2		MOL		1955
		436	FORMA	TISH ,1	1. 41, 11, 41,	11, A1, 11, 3X, 7F10,	5)		MOL		1923
		440	FORMA	T(1H .4	15)				MOL		1924

PUN-107	0	RHUMOL	16/04/04	28.13.03	PARKERZZUR	PAGE	NG.	6
450 F	CRMAT (4F 1	0.5)				HOL		1925
467 F	ORMATCIN	,4-10,5)				MOL		1926
478 F	LAZJ LAWAD	2)				MOL		1927
490 F	DRMAT (1H	((xo.54, xo)P.				MOL		1528
499 F	CRMATISH	.7X. A(1H+. 1X. F1	8.5.22)			MOL		1929
508 F	ORMATCINA	BHGFOMETRY)				MOL		1930
510 F	DEMATING	, 1 LHSIGMA SYMME	TRY (1)			MOL		1931
520 F	ORMAT (1HO	.23HSIGMA UNGER	ADE SYMMETRY ,	1)		MOL		1932
532 F	GRMAT (1H3	, 1 THPI SYMMETR-	,/)			MOL		1733
540 F	CRMATCINP	ANDI UNGERADE	EYMMETRY . /)		2	MOL		1934
558 F	CRMAT(/.2	SH NUMBER OF SI	GMA CRHITALS, 1	5.		MOL		1935
1/	45H NUMPE	R OF BASIS FUNC	TIONS FOR SIGH	A DREITALS, I	5,	MOL		1936
2	ANTIN H221	FR OF PI ORBITA	LS, 15,			MOL		1937
3	ATH HIMA	FR OF PASIS FUN	CTIONS FOR PT	OPEITALS, IS,		MOL		1938
4	1344 NUMB	EP OF SIGNA UNG	TRADE ORBITALS	,15,		MOL		1939
51	54- NU485	R OF BASIS FUEL	TIONS FOR SIGM	A UNGERADE O	RBITALS, 15,	NOL		1948
5	/31H 101MB	ER OF PI UNGERA	DE CRBITALS, 15			HCL		1941
7	151H NUMB	ER OF BASIS FUN	CTIONS FOR PI	UNGERADE ORB	ITALS, 15)	MCL		1942
560	FORMATCIN	. 11, 41, I1, 7X.1	3F10.6)			MOL		1943
570 F	ORMAT (QH	NLK. OX. SHEXPENE	NT, 18, 6110)			MOL		1934
Ε	ND					MOL		1945

Sample output using LMOLMO. This sample run calculates the electron gas potential between two HF molecules.

HYDROGEN FLUORIDE

28 BASIS FUNCTIONS, Z-COORDINATE =

-.08729,NUCLEAR CHARGE = 9.0

N	L	ZETA	COEFF
3	0	11.20007	1408299E+04
3	. 0	9.87840	.1158758E+04
4	. 0	17.86914	.4023174E+04
3	0	5.68544	4870859E+02
3	2	5.68544	9741719E+02
3	ō	8.55686	- 5221206F+02
3	2	8.55686	= 1044240F+03
1	0	15.88748	2833941F+03
1	0	22.05320	1680531E+03
3	Ő	5,19098	2451414E+02
3	0	6.51266	- 4606536F+01
ž	0	2 81/102	11612/8E+00
2	2	2 81/102	2722/055+00
2	2	7 78034	36003045+01
2	2	3.70020	. 30003042401
2	č .	3.10020	- 178//7505+02
2	2	4.74050	- 1/04/592+02
2	e	4. /4050	33095192+02
2	0	0.00100	.1649703E+02
2	2	6.65168	.1529941E+03
2	0	2.71672	.2278555E+00
2	2	2.71672	2278556E+00
3	0	3.68748	.8843553E+01
3	2	3.68748	8843553E+01
3	0	4.65824	4113930E+02
3	2	4.65824	.4113930E+02
2	1	4.30790	5530379E+02
2	1	5.62958	.7416267E+02
3	1	3.34166	1008724E+01
9	BASIS	FUNCTIONS	Z-COORDINATE =

1.64551, NUCLEAR CHARGE = 1.0

N	L	ZETA	COEFF
1	0	2.7453	.1900348E+00
2	0	3.8331	7 .4533139E+00
3	0	3.0000	.2125173E-01
3	5	3.0000	0 2125173E-01
3	0	3. 57 12	2 8331737E-01
3	2	3.5712	.8331737E-01
2	1	4.2953	1099739E+01
2	1	5, 38 31	0 . 10 46 35 5E +0 1
3	1	5. 38 40	• 53 79 89 0E +0 0
6 84	SIS	FUNCTION	S,Z-COORDINATE =

-0.00000, NUCLEAR CHARGE = 0.0

N	L	ZETA	COEFF
2	1	3.74594	.1357075E+02
5	1	2.77970	. 6535777E+00
2	1	5.65112	50 56 75 0E +0 1
2	0	4.62902	.1397906E+03

2 0 3.30734 -.7293302E+01 2 0 5.71681 -.1652621E+03

6 BASIS FUNCTIONS, Z-COORDINATE =

1.04000,NUCLEAR CHARGE = 0.0

N	L	ZETA	COEFF
3	0	7.00000	.6048218E+01
3	0	7.00000	.2143273E+01
3	2	7.00000	.4286546E+01
3	0	4.00000	7519484E-01
3	2	4.00000	1503897E+00
3	0	4.00000	.8562901E+00

MOMENTS IN ATOMIC UNITS

MONOPOLE	DIPOLE	QUADRUPOLE	OCTAPOLE	HEXADECAPOLE
7569298E-02	.7547643E+00	.1735125E+01	.2583110E+01	.4926913E+01

DATE 050376 TIME

THIS POTENTIAL SURFACE CALCULATION IS FOR IDENTICAL MOLECULES THE POTENTIAL SURFACE WILL BE CALCULATED AT 6 RADIAL DISTANCES

8.00000 7.00000 6.00000 5.00000 4.00000 3.00000

THE POTENTIAL SURFACE WILL BE CALCULATED AT 1 PHI1 ANGLES. THE COSINES OF THE PHI1 ANGLES ARE

1.00000

THE POTENTIAL SURFACE WILL BE CALCULATED AT 2 THETA1 ANGLES. THE COSINES OF THE THETA1 ANGLES ARE

1.00000 0.00000

THE POTENTIAL SURFACE WILL BE CALCULATED AT 2 THETA2 ANGLES. THE COSINES OF THE THETA2 ANGLES ARE

1.00000 0.00000

DATE 050376 TIME

THE 96 RADIAL INTERPOLATION POINTS ARE

1.88172	2.00000	2.11828	2.23656	2.35484
2.47312	2.59140	2.70968	2.82796	2.94624
3,06452	3.18280	3.30108	3.41935	3.53763
3.65591	3.77419	3.89247	4.01075	4.12903
4.24731	4.36559	4.48387	4.60215	4.72043
4.83871	4.95699	5.07527	5.19355	5.31183
5.43011	5.54839	5.66667	5.78495	5.90323
6.02151	6.13978	6.25806	6.37634	6.49462
6.61290	6.73118	6.84946	6.96774	7.08602
7.20430	7.32258	7.44086	7.55914	7.67742
7.79570	7.91398	8.03226	8.15054	8.26882
8.38710	8.50538	8.62366	8.74194	8.86022
8.97849	9.09677	9.21505	9.33333	9.45161
9.56989	9.68817	9.80645	9.92473	10.04301
10.16129	10.27957	10.39785	10.51613	10.63441
10.75269	10.87097	10.98925	11.10753	11.22581
11.34409	11.46237	11.58065	11.69892	11.81720
11,93548	12.05376	12.17204	12.29032	12.40860
12.52688	12.64516	12.76344	12.88172	13.00000
13.11828				

THE COSINES OF THE 96 THETA INTERPOLATION POINTS ARE

-1.00000	97895	-,95789	93684	91579
89474	87368	85263	83158	81053
78947	76842	74737	72632	70526
68421	66316	64211	62105	60000
57895	55789	53684	51579	49474
47368	45263	43158	41053	38947
36842	34737	32632	30526	26421
26316	24211	22105	20000	17895
15789	13684	11579	09474	07368
05263	03158	01053	.01053	.03158
.05263	.07368	.09474	.11579	.13684
.15789	.17895	.20000	.22105	.24211
.26316	.28421	.30526	.32632	. 34737
.36842	.38947	.41053	.43158	. 45263
.47368	. 49474	.51579	. 53684	.55789
. 57895	.60000	.62105	. 64211	. 66316
. 68 42 1	.70526	.72632	.74737	.76842
. 78 94 7	. 81 05 3	.83158	. 85 26 3	. 87.368
. 89474	.91579	. 93684	. 95789	.97895
1.00000				

THE RADIAL INTEGRATION WILL BE SPLIT INTO 11 SECTIONS. THE SECTIONS AND THE NUMBER OF POINTS IN EACH SECTION ARE

0.0000000	
	3
.08729	. 9
1.50000	
1.64551	4
	2
2.00000	2
2.50000	-
3.00000	5
	2
3.50000	2
4.00000	
5.00000	4
	4 -
6.00000	2
6.40312	-

THE 36 RADIAL INTEGRATION POINTS

.00984	04365	.07745	10978	20311
.36039	.56461	.79365	30550.1	1.22690
1.38418	1.47751	1.51010	1.54802	1.59749
1.63541	1.72042	1.92509	2.10566	2.39434
2.60566	2.89434	3.10566	3.39434	3.60566
3.89434	4.06943	4.33001	4.66999	4.93057
5.06943	5.33001	5.66999	5.93057	6.08519
6.31793				

THE 24 THETA INTEGRATION POINTS

99519	97 47 3	93827	88642	82000
-,74012	64809	54542	43379	31504
19112	06406	.06406	.19112	. 31504
. 43379	.54542	.64809	.74012	.82000
.88642	.93827	.97473	. 99519	

THE 24 PHI INTEGRATION POINTS

. 99 98 9	. 99685	. 98126	. 93701	. 84433
. 68 48 3	. 44 86 5	. 14 22 1	20 65 0	54 89 1
82 51 0	97 98 2	97 98 2	82 51 0	54 89 1
20 65 0	. 14221	. 44865	. 68 48 3	. 84 43 3
. 93701	. 98 126	. 99 68 5	. 99 98 9	

MOLECULE A HAS 10 ELECTRONS

MOLECULE & HAS 10 ELECTRONS

TIME REQUIREMENT FOR THIS CALCULATION WAS 39.38567 SECONDS.

DATE 050376 TIME

SELF= .4405045E+00 SECONDS= .1384605E+00 R= .8000000E+01 PHI1= 0. THETA1= 0. THETA2= 0. CORRELATION= -.1815626E-04 COULOMBIC= -.1955372E-02 EXCHANGE= -.2623662E-04 KINETIC= .3328929E-04 GKSCF= -.1981643E-02 GKRSCF= -.1948319E-02 GK= -.1999799E-02 GKR= -.1966475F-02 SELF= .4405045E+00 SECONDS= .2699019E+01 R= .8000000E+01 PHI1= 0. THETA1= 0. THETA2= .1570796E+01 CORRELATION= -.2377256E-04 COULOMBIC= -.7087754E-03 EXCHANGE= -.3486082E-04 KINETIC= .4673089E-04 GKSCF= -.7411829E-03 GKRSCF= -.6969053E-03 GK= -.7649554E-03 GKR= -.7206779E-03 SELF= .4405045E+00 SECONDS= .2670205E+01 THETA1= .1570796E+01 THETA2= 0. R= .8000000E+01 PHI1= 0. CORRELATION= -.1119356E-04 COULOMBIC= .2969551E-03 EXCHANGE= -.1601794E-04 KINETIC= .1771620E-04 GKSCF= .2783085E-03 GKRSCF= .2986533E-03 GK= .2671150E-03 GKR= .2874598E-03 SELF= .4405045E+00 SECONDS= .2686051E+01 R= .8000000E+01 PHI1= 0. THETA1= .1570796E+01 THETA2= .1570796E+01 CORRELATION= -.1459551E-04 COULOMBIC= .1127493E-02 EXCHANGE= -.2119317E-04 KINETIC= .2454196E-04 GKSCF= _1103924E=02 GKRSCF= _1130842E=02 GK= _1089328E=02 GKR= _1116246E=02 SELF= .4405045E+00 SECONDS= .1340806E+00 THETA1= 0. R= .7000000E+01 PHI1= 0. THETAZ= 0. CORRELATION= -.7816781E-04 COULDMBIC= -.2881706E-02 EXCHANGE= -.1311088E-03 KINETIC= .2533619E-03 GKSCF= -.2925978E-02 GKRSCF= -.2759453E-02 GK= -.3004146E-02 GKR= -.2837621E-02 SELF= .4405045E+00 SECONDS= .2620062E+01 R= .7000000E+01 PH11= 0. THETA1= 0. THETA2= .1570796E+01 CORRELATION= -.9556989E-04 COULOMBIC= -.1369962E-02 EXCHANGE= -.1651074E-03 KINETIC= .3315924E-03 GKSCF= -.1413184E-02 GKRSCF= -.1203477E-02 GK= -.1508754E-02 GKR= -.1299047E-02 SELF= .4405045E+00 SECONDS= .2619672E+01 R= .7000000E+01 PH11= 0. THETA1= .1570796E+01 THETA2= 0. CORRELATION= -. 4843840E-04 COULOMBIC= .4381756E-03 EXCHANGE= -. 7522733E-04 KINETIC= .1256257E-03 GKSCF= .3930259E-03 GKRSCF= .4885739E-03 GK= .3445875E-03 GKR= .4401355E-03 SELF= .4405045E+00 SECONDS= .2663308E+01 R= .7000000E+01 PHI1= 0. THETA1= .1570796E+01 THETA2= .1570796E+01 CORRELATION= -.6019310E-04 COULOMBIC= .1675973E-02 EXCHANGE= -.9531888E-04 KINETIC= .1651234E-03 GKSCF= .1624711E-02 GKRSCF= .1745778E-02 GK= .1564518E-02 GKR= .1685584E-02

DATE 050376

SELF= .4405045E+00 SECONDS= .1315535E+00 R= .6000000E+01 PHIJ= 0. THETA1= 0. THETA2= 0. CORRELATION= -.2869982E-03 COULOMBIC= -.4513557E-02 ExCHANGE= -.6557910E-03 KINETIC= .1944065E-02 GKSCF= -.4058219E-02 GKRSCF= -.3225283E-02 GK= -.4345217E-02 GKR= -.3512281E-02 SELF= .4405045E+00 SECONDS= .2556407E+01 THETA1= 0. THETA2= .1570796E+01 R= .6000000E+01 PHI1= 0. CORRELATION= -.3327341E-03 COULOMBIC= -.3031722E-02 EXCHANGE= -.7807180E-03 KINETIC= .2357090E-02 GKSCF= -.2446959E-02 GKRSCF= -.1455350E-02 GK= -.2779693E-02 GKR= -.1788085E-02 SELF= .4405045E+00 SECONDS= .2552889E+01 R= .6000000E+01 PHI1= 0. THETA1= .1570796E+01 THETA2= 0. CORRELATION= - 1814894E-03 COULOMBIC= .6161017E-03 EXCHANGE= -.3563781E-03 KINETIC= .8986678E-03 GKSCF= .7057470E-03 GKRSCF= .1158391E-02 GK= .5242576E-03 GKR= .9769020E-03 SELF= .4405045E+00 SECONDS= .2579054E+01 R= .6000000E+01 PHI1= 0. THETA1= .1570796E+01 THETA2= .1570796E+01 CORRELATION= -.2143069E-03 COULOMBIC= .2554210E-02 EXCHANGE= -.4329906E-03 KINETIC= .1119962E-02 GKSCF= .2691229E-02 GKRSCF= .3241181E-02 GK= .2476922E-02 GKH= .3026874E-02 SELF= .4405045E+00 SECONDS= .1273407E+00 R= .5000000E+01 PHI1= 0. THETA1= 0. THETA2= 0. CORRELATION= -.9737384E-03 COULONBIC= -.8273797E-02 EXCHANGE= -.3310273E-02 KINETIC= .1497530E-01 GKSCF= -.8132231E-03 GKRSCF= .3391235E-02 GK= -.1786961E-02 GKR= .2417496E-02 SELF= .4405045E+00 SECUNDS= .2482100E+01 THETA1= 0. THETA2= .1570796E+01 R= .5000000E+01 PHI1= 0. CORRELATION= -.1079566E-02 COULOMBIC= -.8537275E-02 EXCHANGE= -.3680704E-02 KINETIC= .1658237E-01 GKSCF= -.3105605E-03 GKRSCF= .4364390E-02 GK= -.1340126E-02 GKR= .3284824E-02 SELF= .4405045E+00 SECONDS= .2483352E+01 R= _5000000E+01 PHI1= 0. THETA1= .1570796E+01 THETA2= 0. CORRELATION= -.6197121E-03 COULOMBIC= .2662628E-03 EXCHANGE= -.1726163E-02 KINETIC= .6519114E-02 GKSCF= .2866772E-02 GKRSCF= .5059214E-02 GK= .2247060E-02 GKR= .4439502E-02 SELF= .4405045E+00 SECONDS= .2506695E+01 R= _5000000E+01 PHI1= 0. THETA1= .1570796E+01 THETA2= .1570796E+01 CORRELATION= -. 7061766E-03 COULOMBIC= .3370652E-02 EXCHANGE= -. 1996154E-02 KINETIC= .7626935E-02 GKSCF= _6466069E-02 GKRSCF= _9001433E-02 GK= .5759892E-02 GKR= .8295256E-02

DATE 050376

SELF= .4405045E+00 SECONDS= .1243775E+00 R= .4000000E+01 PHI1= 0. THETA1= 0. THETA2= 0. CORRELATION= -.3313797E-02 COULOMBIC= -.2107258E-01 EXCHANGE= -.1687929E-01 KINETIC= .1136705E+00 GKSCF= .5427989E-01 GKRSCF= .7571867E-01 GK= .5096609E-01 GKR= .7240488E-01 SELF= .4405045E+00 SECONDS= .2414344E+01 R= _4000000E+01 PHI1= 0. THETA1= 0. THETA2= .1570796E+01 CORRELATION= -.3430521E-02 COULOMBIC= -.3134211E-01 EXCHANGE= -.1731155E-01 KINETIC= .1149199E+00 GKSCF= .4427845E-01 GKRSCF= .6626627E-01 GK= .4064793E-01 GKR= .6283575E-01 SELF= .4405045E+00 SECONDS= .2409448E+01 R= _4000000E+01 PHI1= 0. THETA1= _1570796E+01 THETA2= 0. CORRELATION= -.2093551E-02 COULOMBIC= -.7049265E-02 EXCHANGE= -.8683907E-02 KINETIC= .4857899E-01 GKSCF= .2181618E-01 GKRSCF= .3284582E-01 GK= .1972263E-01 GKR= .3075227E-01 SELF= .4405045E+00 SECONDS= .2427753E+01 R= _4000000E+01 PHI1= 0. THETA1= _1570796E+01 THETA2= _1570796E+01 CORRELATION= -.2227423E-02 COULOMBIC= -.2657496E-02 EXCHANGE= -.9290768E-02 KINETIC= .5232281E-01 GKSCF= .2857411E-01 GKRSCF= .4037454E-01 GK= .2634669E-01 GKR= .3814712E-01 SELF= .4405045E+00 SECONDS= .1233205E+00 R= .3000000E+01 PHI1= 0. THETA1= 0. THETA2= 0. CORRELATION= -.9747657E-02 COULOMBIC= .6294975E-01 EXCHANGE= -.7348273E-01 KINETIC= .7371701E+00 GKSCF= .6333050E+00 GKRSCF= .7266371E+00 GK= .6235573E+00 GKR= .7168895E+00 SELF= .4405045E+00 SECONDS= .2386296E+01 R= .3000000E+01 PHI1= 0. THETA1= 0. THETA2= .1570796E+01 CORRELATION= -.9874032E-02 COULOMBIC= -.3562013E-01 EXCHANGE= -.7275364E-01 KINETIC= .7093341E+00 GKSCF= .5085541E+00 GKRSCF= .6009603E+00 GK= .4986801E+00 GKK= .5910863E+00 SELF= .4405045E+00 SECONDS= .2400238E+01 R= .3000000E+01 PHI1= 0. THETA1= .1570796E+01 THETA2= 0. CORRELATION= -.6567649E-02 COULOMBIC= -.8788867E-01 EXCHANGE= -.4144088E-01 KINETIC= .3481034E+00 GKSCF= .1661388E+00 GKRSCF= .2187739E+00 GK= .1595712E+00 GKR= .2122062E+00 SELF= _4405045E+00 SECONDS= .2404712E+01 R= .3000000E+01 PHI1= 0. THETA1= .1570796E+01 THETA2= .1570796E+01 CORRELATION= -.6817478E-02 COULOMBIC= -.8136530E-01 EXCHANGE= -.4245001E-01 KINETIC= .3517323E+00 GKSCF= .1740003E+00 GKRSCF= .2279170E+00 GK= .1671828E+00 GKR= .2210996E+00

TOTAL TIME REQUIRED= .8572641E+02SECONDS.

Sample output using SLAFIT. This sample run fits the electron density of a HF molecule to a linear combination of Slater type basis functions. Data is punched for use in LMOLMO.

HYDROGEN FLUORIDE

ŵ

•	PO	NER OF	
ZETA	Z	XSQ	R
11.20007	-0	- 0	2
9.87840	-0	-0	2
17.86914	-0	-0	3
5.68544	2	-0	-0
8.55686	2	-0	-0
15.88748	-0	-0	-0
22.05320	-0	-0	-0
5.19098	-0	-0	2
6.51266	-0	-0	2
2.81402	2	-0	-0
3.78026	2	-0	-0
4.74650	2	-0	-0
6.65168	2	-0	-0
2.71672	-0	1	-0
3.68748	-0	1	-0
4.65824	-0	1	-0
4.30790	1	-0	-0
5.62958	1	-0	-0
3.34166	1	-0	1
2.74538	-0	- 0	-0
3.83317	-0	-0	1
3.00000	- 0	1	-0
3.57122	-0	1	-0
4.29531	1	-0	-0
5.38310	1	-0	-0
5.38409	1	-0	1
3.74594	1	-0	-0
2.77970	1	-0	=0
5.65112	1	- 0	-0
4.62902	-0	- 0	1
3.30734	-0	- 0	1
5.71681	-0	- 0	1
7.00000	-0	- 0	2
7.00000	2	- 0	-0
4.00000	5	-0	-0
4.00000	-0	- 0	2

DATE 050376 TIME

A. D. MCLEAN AND M. YOSHIMINE PAGE 1, HYDROGEN FLUORIDE THE NUMBER OF NUCLEI 2 GEOMETRY F H * 1.73280 * ATOM Z-COORDINATE ATOMIC WEIGHT NUCLEAR CHAPGE -.087290789 1 18.998400000 9.000000000 1.007825000 2 1.645509211 1.000000000 NUMBER OF SIGMA ORBITALS 3 NUMBER OF BASIS FUNCTIONS FOR SIGMA ORBITALS 18 NUMBER OF PI ORBITALS 1 NUMBER OF BASIS FUNCTIONS FOR PI ORBITALS 10 NUMBER OF SIGMA UNGERADE ORBITALS -0 NUMBER OF BASIS FUNCTIONS FOR SIGMA UNGERADE ORBITALS -0 NUMBER OF PI UNGERADE ORBITALS -0 NUMBER OF BASIS FUNCTIONS FOR PI UNGERADE ORBITALS -0 SIGMA SYMMETRY EXPONENT NLK 1 2 3 151 7.943740 .951850 -.256870 .061790 151 14.109460 .085860 .005030 -.001370 251 1.934650 -.002690 .447280 -.154830 3.256330 251 .004410 .586310 -.155540 351 9.925400 .004810 -.040860 -. 025460 .038900 2P1 1.407010 -.000680 .290760 2P1 2.373250 -.000760 .051050 .407850 2P1 4.278430 .001040 .018500 .206310 2P1 .000470 8.972510 .001490 .010430 .018830 3D1 1.835390 -.000300 .044410 .010740 301 3.367960 -.000080 .003870 4F1 .011940 2.700100 -.000040 .006380 .003310 .187960 152 1.372690 -.005170 .064780 192 2.460480 -.001080 .051370 .040630 555 2.461470 -.000520 .042750 2P2 -.000080 -.011080 -.011330 2.922620 3P2 2.000000 -.000870 -.011040 -. 00 08 40 3D 2 2.000000 .000210 .006990 .005720 PI SYMMETRY NL K EX PONENT 1 . 33 00 10 2P 1 1.358360 2P 1 . 49 13 10 2.329120 . 25 52 60 2P 1 4.261450 2P 1 9.297420 . 01 06 30 3D 1 2.133800 . 02 58 20 4D 1 2.100000 -. 00 28 20 4F 1 2. 79 36 50 . 00 63 50 2P 2 . 02 49 70 1.770560 3D 2 3. 32 04 90 -. 00 31 80 3P 2 1. 50 00 00 . 00 52 70

HYDROGEN FLUORIDE

NRIS= 12	NR I =	100		
.00984	.04365	.07745	.10967	. 19955
.33958	.49771	.63774	.72762	.77532
.87705	1.03552	1.21448	1.37295	1.47468
1.51640	1.57275	1.62911	1.68546	1.82275
1.96005	2.05635	2,25000	2.44365	2.55635
2.75000	2.94365	3.05635	3.25000	3.44365
3.55635	3.75000	3.94365	4.04691	4.23077
4.50000	4.76923	4.95309	5.04691	5.23077
5.50000	5.76923	5.95309	6.04543	6.20156
6.35769	6.52528	6.64745	6.76961	6.89178
7.01394	7.13611	7.25827	7.38044	7.50260
7.62476	7.74693	7.86909	7.99126	8.11342
8.23559	8.35775	8.47992	8,60208	8.72424
8.84641	8.96857	9.09074	9.21290	9,33507
9.45723	9.57940	9.70156	9.82372	9.94589
10.06805	10.19022	10.31238	10.43455	10.55671
10.67888	10.80104	10.92320	11,04537	11.16753
11.28970	11.41186	11.53403	11.65619	11,77836
11.90052	12.02268	12.14485	12.26701	12.38.918
12.51134	12.63351	12.75567	12,87784	13.00000
NTI= 40				
∞.99824	-,99073	97726	95792	93281
90210	86596	82401	77831	72732
67196	61255	~.54947	48308	41378
34199	26815	19270	11608	03877
.03877	.11608	.19270	.26815	. 34199
. 41378	. 48308	. 54947	. 61255	.67196
.7 2732	.77831	.82461	.86596	. 90210
. 93281	. 95792	.97726	,99073	. 99824

STANDARD DEVIATION= .8957880E-01

RELATIVE STANDARD DEVIATION= .1622228E-01

HYDROGEN FLUORIDE

2 4		
9.00000	1.00000	
08729	1.64551	0.00000 1.04000
Ai I	ZETA	COFFE
7	11 20007	- 1/1082005 : 0/1
5 -0	11.20007	14062992+04
5 -0	9.8/840	.1158/58E+04
4 -0	17.86914	.4023174E+04
3 0	5.68544	4870859E+02
3 2	5.68544	9741719E+02
3 0	8.55686	5221206E+02
3 2	8.55686	1044241E+03
1 -0	15.88748	2833941F+03
1 =0	22.05320	16805315+03
3 -0	5 10008	2/151/11/15+02
3 -0	5.17070	- 44045745.01
3 -0	0.51200	40003505. +01
5 0	2.81402	.1161248E+00
3 2	2.81402	.2322495E+00
3 0	3.78026	.3600384E+01
3 2	3.78026	.7200769E+01
3 0	4.74650	1784759E+02
3 2	4.74650	3569519E+02
3 0	6.65168	.7649703E+02
3 2	6-65168	15299415+03
3 0	2 71672	22785555+00
2 2	2 71472	- 22785555400
3 6	2.110/2	22/05552+00
5 0	5.08/48	.88435535+01
5 2	5.68748	8843553E+01
3 0	4.65824	4113930E+02
3 2	4.65824	.4113930E+02
2 1	4.30790	5530379E+02
2 1	5.62958	.7416267E+02
3 1	3.34166	1008724E+01
1 -0	2.74538	- 1900348E+00
2 =0	3,83317	4533139F+00
3 0	3 00000	21 25 17 36 -01
7 2	3.00000	- 21251736-01
7 0	3.00000	- E1COI/SL-01
5 0	3.5/122	0551/5/2-01
5 2	3.5/122	.8331/3/E =01
2 1	4.29531	1099739E+01
2 1	5.38310	.1046355E+01
3 1	5.38409	.5379890E+00
2 1	3.74594	.1357075E+02
2 1	2.77970	. 65 35 77 7E +0 0
2 1	5.65112	- 50 56 75 0F +0 1
2 =0	1 62002	13070065+03
2 -0	7 20724	- 7203 30 2F +01
2 -0	5. 50 / 54	- 16 73 30 26 70 1
2 -0	5. /1681	-, 10526212 +V3
5 -0	1.00000	. 60 48 21 8E +0 1
5 0	7.00000	. 21 43 27 3E +0 1
3 2	7.00000	. 4286546E +01
3 0	4.00000	7519484E-01
3 2	4.00000	15 03 89 7E +0 0
3 -0	4.00000	- 8562901E+00

DATE 050376 TIME

SE J

APPENDIX D

INTERMOLECULAR POTENTIAL SURFACES FROM ELECTRON GAS METHODS. I. ANGLE AND DISTANCE DEPENDENCE OF THE He-CO₂ AND Ar-CO₂ INTERACTIONS

(A reprint. See Gregory A. Parker, Richard L. Snow and Russell T Pack J. Chem. Phys. <u>64</u>, 1668 (1976).)

Intermolecular potential surfaces from electron gas methods. I. Angle and distance dependence of the He–CO₂ and Ar–CO₂ interactions^{*}

Gregory A. Parker[†] and Richard L. Snow

Department of Chemistry, Brigham Young University, Provo, Utah 84602

Russell T Pack

Department of Chemistry, Brigham Young University, Provo, Utah 84602 and Group T-6, University of California Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545[‡] (Received 12 September 1975)

Angle dependent intermolecular potential energy surfaces suitable for use in studies of rotationally inelastic collisions of rigid linear CO_2 with Ar and He are calculated using the electron gas model to obtain the short range interactions and joining them smoothly to the long range van der Waals tails of the preceding paper. Smooth analytic fits to the potentials, convenient for use in scattering calculations, are given. The * surfaces are very strongly nonspherical. Virial coefficients calculated using the *a priori* He-CO₂ potential are in excellent agreement with experiment, and a simple adjustment of the Ar-CO₂ potential gives excellent agreement with both virial coefficients and a potential inferred from high energy scattering data.

I. INTRODUCTION

Until recently, little has been known about the angle dependence of the interaction energies of molecules with other atoms or molecules. Use of ab initio SCF and CI methods to generate the whole potential energy surface is slow and expensive, so that results are available for very few systems, while analysis of experiments gives information mostly about the spherical average of the intermolecular potential. However, renewed interest in calculating interaction energies between closed shell systems has recently been generated by the successes of a simple electron gas model developed by Gaydaenko and Nikulin¹ and Gordon and Kim.⁴ A modification to avoid overcounting of self-exchange energy has been suggested by Rae,3 and ways to introduce correct van der Waals long range behavior have been given by Cohen and Pack4 and Kim and Gordon.5 The surprisingly good results of the method for the interactions of closed shell atoms2-6 and ions,7 collisional polarizabilities, 8 three-body interactions, 9 atom-surface interactions, 10 and the spherical part of molecular interactions¹¹ have led to its being programmed for atom-molecule¹² and molecule-molecule interactions.¹³ The atom-molecule program of Green and Gordon¹² is available from QCPE and our¹³ molecule-molecule program will also be sent there. The method has been used by others to determine the distance and angle dependence of the Ar-N2, 14 Ar-HCl, 15 He-HCN, 16 He-CO, 17 and He-H2CO18 interactions, and the distance. angle, and vibrational coordinate dependence of the Li*-H218 interactions. We19 have calculated the angle and distance dependence of the He-H2, He-CO2, Ar-CO2, noble gas-CO, Ar-NO,²⁰ noble gas-HF, HF-HF, 13 and CO-CO interactions and the angle, vibrational coordinate, and distance dependence of the Ar-CO and Ar-HF interactions.

In this paper we report the $He-CO_2$ and $Ar-CO_2$ surfaces. Most previous potentials for these systems have been crude empirical forms which assume either spherical or pairwise additive forces. However, a minimal

basis set SCF calculation of the $Ar-CO_2$ surface, including some vibrational coordinate dependence has recently been done by Suzukawa,²¹ and we compare our results with his.

In Sec. II of this paper we briefly review the equations of the electron gas model and our particular version and computational method. In Sec. III we give the results of the calculations, fit the potential surfaces with a convenient analytic form and attach previously determined^{22,23} van der Waals potentials to give smooth intermolecular potentials which behave properly at both large and small distances. Then, in the last section we make a comparison with available experimental data, adjust the results to improve agreement, and discuss the accuracy and usefulness of the resulting potential energy surfaces.

II. METHOD OF CALCULATION

and

We consider the interaction of a neutral closed shell linear molecule A (in this case CO_2 with the nuclei fixed in their equilibrium positions) with a neutral closed shell atom B (in this case He or Ar). For such a system the interaction potential in the electron gas model using the coordinates of Fig. 1 is^{2,4}

$$(r, \theta) = E(r, \theta) - E(\infty, any \theta), \qquad (1)$$

$$= V_{HZ}(r,\theta) + V_{COP}(r,\theta) , \qquad (2)$$

 $V_{\rm HF} = V_{\rm COUL} + V_{\rm KIN} + V_{\rm EXC} , \qquad (3)$

where the various terms represent the electron gas estimates of the Hartree-Fock, correlation, Coulomb, kinetic, and exchange contributions to the interaction energy. To calculate these, one approximates the charge density ρ_{AB} of the combined system as^{1,2}

$$\rho_{AB} \approx \rho_A + \rho_B . \tag{4}$$

Then, the Coulombic interaction is given simply (in atomic units) by the electrostatic expression,

1668 The Journal of Chemica: Physics, Vol. 64, No. 4, 15 February 1976

Copyright © 1976 American Institute of Physics

$$V_{\text{coul}} = \int \int \rho_{\text{A}}(\mathbf{r}_{1})\rho_{\text{B}}(\mathbf{r}_{2}) \left[\frac{1}{\gamma_{12}} - \frac{1}{r_{1\text{B}}} + \sum_{\alpha} f_{\alpha} \left(\frac{1}{r_{\alpha\text{B}}} - \frac{1}{\gamma_{2\alpha}}\right)\right] d\mathbf{r}_{1} d\mathbf{r}_{2} , \quad (5)$$

where the sums are over the nuclei α in A, and $f_{\alpha} = Z_{\alpha}/2$ $N_{\rm A}$, where Z_{α} is the charge of nucleus α and $N_{\rm A}$ is the number of electrons in molecule A,

$$N_{\mathbf{A}} = \int \rho_{\mathbf{A}}(\mathbf{r}_{i}) d\mathbf{r}_{1} . \tag{6}$$

The other terms V_i (i = KIN, EXC, or COR) in V are obtained using the energy density functionals of a uniform electron gas; that is,

$$V_i = \int d\mathbf{r} \left[\rho_{AB} \epsilon_i (\rho_{AB}) - \rho_A \epsilon_i (\rho_A) - \rho_B \epsilon_i (\rho_B) \right], \quad (7)$$

where

$$\epsilon_{\pi IR}(\rho) = \frac{3}{10} (3\pi^2)^{2/3} \rho^{2/3} , \qquad (8)$$

$$\epsilon_{\text{EXC}}(\rho) = -\frac{3}{4} (3/\pi)^{1/3} \rho^{1/3} , \qquad (9)$$

and

 $\epsilon_{COR}(\rho) = -0.0311 \ln r_s - 0.048 + 0.009 r_s \ln r_s - 0.01 r_s$

$$r_s \leq 0.7$$
, (10a)

0 7 / ~ / 10

$$= -0.06156 + 0.01898 \ln r_s, \quad 0.7 < r_s < 10, \quad (10b)$$
$$= -0.438 r_s^{-1} + 1.325 r_s^{-5/2} - 1.47 r_s^{-2} - 0.4 r_s^{-5/2},$$

$$10 \leq r_s$$
, (10c)

with $r_s(4\pi\rho/3)^{-1/3}$. Equations (10a) and (10c) are the high and low density expansions. respectively, of the electron gas correlation energy density, and (10b) is an interpolation formula.

In the present calculations, for reasons discussed in detail elsewhere, 4 we used Rae's3 correction to the exchange energy to avoid self-exchange contributions. This changes V_{EXC} of Eq. (7) into

$$V_{\text{EXC}}(\text{Rae}) = C(N) V_{\text{EXC}} , \qquad (11)$$

where C(N) is the correction factor

- 0 06156 . 0 01909 100

$$C(N) = 1 - 8\delta/3 + 2\delta^2 - \delta^4/3 , \qquad (12)$$

A is the solution of

$$(4N)^{-1} = \delta^3 (1 - 9\delta/8 + \delta^3/4) , \qquad (13)$$

and N is the total number of electrons in the system. C(N) = 0.5454 for Ar-CO₂, and C(N) = 0.4699 for He-CO2. In addition, VCOR is known to be quite inaccurate, and we thus feel free to scale it to match the long range van der Waals correlation energy as described in the next section and elsewhere.

Use of the above formulas and the available Hartree-Fock wavefunctions of McLean and Yoshimine²⁴ for CO₂ and Clementi²⁵ for Ar and He to construct p, and p, reduces the determination of V to evaluation of the quadratures, Eqs. (5) and (7). To do them, we note that B is a spherical atom and the Hartree-Fock atomic wavefunctions²⁵ used are expressed in Slater orbitals, so that the electrostatic potential due to B can be evaluated analytically,

$$\Phi_{\rm B}(\mathbf{r}_1) = \int \rho_{\rm B}(\mathbf{r}_2) \, r_{12}^{-1} \, d \, \mathbf{r}_2 \,, \qquad (14)$$

which reduces Eq. (5) to the three dimensional quadrature.

$$V_{\text{COUL}} = \int d\mathbf{r}_{1} \rho_{A}(\mathbf{r}_{1}) \left\{ \Phi_{B}(\mathbf{r}_{1}) - \frac{Z_{B}}{r_{1B}} + \sum_{\alpha} f_{\alpha} \left[\frac{Z_{B}}{r_{\alpha B}} - \Phi_{B}(\mathbf{r}_{\alpha}) \right] \right\} .$$
(15)

Equations (7) and (15) are then evaluated by three-dimensional quadrature. In this connection, it is important to note that although some of the terms in Eq. (15) are constants and could be integrated over analytically, keeping them in the integrand increases cancellation of quadrature errors. It is also convenient to tabulate Φ_{B} and ρ_{B} , which are spherically symmetric about B, at a large number of distances and then obtain them at each point needed by low order Sterling interpolation. In programming the quadrature we used spherical polar coordinates centered on the center of mass of A (the carbon atom in this case). This is different from the QCPE program of Green and Gordon¹² which uses prolate spheroidal coordinates. Our approach requires more integration points but saves on interpolation time as ρ_A can be tabulated at each of the integration points once and for all and the complete potential energy surface $V(r, \theta)$ calculated at all r and θ without further calculation or interpolation of ρ_A . In the present calculations Gauss-Legendre quadrature formulas were used typically with 32 points for the ϕ_1 integration, 40 points for the θ_1 integration, and two quadratures for the radial integration: a 16-point guadrature extending from the C atom (at the origin) to the O atoms (at 2.1944 a_0) and a 49-point quadrature extending from the O atoms to 13 a_0 . This sufficed to give all the terms except V_{COUL} converged to within 1% everywhere; it gave V_{COUL} converged to about 1% at the smaller r values with the error increasing to about 10% at the largest $(9.5 a_0)$ distances used. Since the total interaction is dominated by the van der Waals potential at the large distances, we believe that the quadruture errors in the

J. Chem. Phys., Vol. 64, No. 4, 15 February 1976

FIG. 2. Comparison of the electron gas (small points) and STO-3G SCF (large points) estimates of the Hartree-Fock interaction energy of Ar with CO_2 at angles 0 and $\pi/2$ as a function of distance.

total interaction energy are less than 5% virtually everywhere, which is well within the accuracy limits of the electron gas model. The time required for tabulating the charge density, electrostatic potential, etc. was typically about 45 seconds on a CDC 7600 computer; thereafter about 20 seconds was required for each point on the potential energy surface $V(r, \theta)$.

Subsequent to the completion of the calculations re-

ported herein, we have found and reported elsewhere¹³ a much faster and more accurate way to do this quadrature.

III. RESULTS AND FITTING

A. Results

The results of the calculations described in the previous section are given in Tables I and II for the He-CO2 interaction and Tables III and IV for the Ar-CO2 interaction. Tables I and III are the electron gas model estimates (including the Rae correction) of V_{HF} , and Tables II and IV are the electron gas estimates of V_{COR} . These tables are given so that the reader who does not wish to use the procedure which follows to fit V with analytic functions is free to use the results directly. Also, $V_{\rm HF}$ is plotted at two angles in Fig. 2 for comparison with the minimal basis set (STO-3G) SCF calculations of Suzukawa.²¹ Considering the approximations involved in both methods, we consider the agreement at small distances to be adequate, but at the larger distances the present results should be the more accurate ones. The SCF results die too rapidly at large r because minimal basis set orbitals are too small at large distances making the integrals involving exchange and overlap energies fall off much too rapidly.

B. Fitting of short range potential

The results of Tables I-IV were first expanded in Legendre polynomials at each τ ,

$$V_{t}(\boldsymbol{\tau},\theta) = \sum_{n=0,2\ldots} v_{n}^{i}(\boldsymbol{\tau}) P_{n}(\cos\theta) , \qquad (16)$$

where only even n occur because of the D_{wh} symmetry of CO_2 . Since the angles at which the $Ar-CO_2$ calculations were done were exactly those of a 15-point Gauss-Legendre quadrature (the symmetry of CO_2 makes the results independent of the sign of $x = \cos\theta$), the v_n^i for that system were obtained directly from quadrature of

$$v_n^i = \left(n + \frac{1}{2}\right) \int_{-1}^1 P_n(x) V_i(\tau, x) \, dx \, . \tag{17}$$

However, the $He-CO_2$ calculations were first done at the angles of a seven point Gauss-Legendre quadrature

TABLE I. $V_{\rm HF}$ for the He-CO₂ interaction as a function of distance and angle. The angles are in radians; V and r are in Hartrec atomic units.

x= cosé	1.0000	0. 9491	0.8500	0.7415	0.6000	0,4058	0,2000	0,0000
	0.0000	0,3204	0, 5548	0.7355	0,9273	1.1529	1.3694	1.5708
3.5	0.1322E+01	0.7943E+00	0.3725E+00	0.1927E+00	0.9753E-01	0.4767E-01	0,2875E-01	0.2410E-01
4.0	0, 5111E+00	0.3383E+00	0.1690E+00	0,8806E-01	0.4362E-01	0. 2020E-01	0.1146E-01	0.9335E-02
4.5	0,2011E+00	0.1386E+00	0.7124E-01	0.3753E-01	0.1838E - 01	0.8146E-02	0.4368E-02	0.3452E-02
5.0	0,7706E-01	0.5437E-01	0.2848E-01	0.1526E-01	0.7364E-02	0.3136E-02	0.1592E-02	0.1225E-02
5.5	0, 2860E - 01	0.2053E-01	0.1098E-01	0.5907E-02	0,2819E-02	0,1153E-02	0.5516E-03	0.4102 E - 03
6.0	0.1028E-01	0.7486E-02	0.4038E-02	0.2184E - 02	0.1029E-02	0.4019E-03	0.1784E-03	0.1266E-03
6.5	0.3598E-02	0.2637E-02	0.1437E-02	0.7704E-03	0.3552E-03	0.1300E-03	- 0, 5151E - 04	0.3374E-04
7.0	0.1213E-02	0.8921E-03	0.4856E-03	0.2565E-03	0.1136E - 03	0.3719E-04	0.1160E-04	0,6033E-05
7.5	0, 3885E - 03	0.2863E - 03	0.1526E-03	0.7857E-04	0.3193E - 04	0.8014E-05	0.6293E-06	-0.8474E-06
8.0	0,1157E-03	0.8478E-04	0.4365E-04	0.2055E-04	0.6662E-05	0.1182E-06	-0.1515E-05	-0.1759E-05
8.5	0.3100E-04	0,2159E-04	0.9839E - 05	0.3441E-05	-0.31022-07	-0.1307E-05	-0.1375E-05	-0,1322E-05
9.0	0.6038E-05	0.3608E-05	0.7286E-06	-0,6348E-06	-0.1159E-05	-0.1101E-05	-0.8942E-06	-0.7980E-06
9.5	-0.1055E-06	-0.5704E-06	-0.1009E-05	-0.1075E-05	- 0. 9316E - 06	-0.6756E-06	-0.4951E-06	-0,4360E-06

J. Chem. Phys., Vol. 64, No. 4, 15 February 1976

TABLE II. V_{COR} for the He-CO, interaction as a function of distance and angle. Hartree atomic units.

x=cost	1.0000	0.9491	0.8500	0.7415	0.6000	0.4056	0.2000	0.0000
70	0.0000	0.3204	0.5548	0.7355	0.9273	1.1529	1.3694	1.5708
3,5	-0.1663E-01	-0.1290E-01	-0.8676E-02	-0.6092E-02	-0.4179E-02	-0.2823E-02	-0.2171E-02	-0.1989E-02
4.0	-0.1008E-01	-0.8038E-02	-0.5490E-02	-0.3841E-02	-0.2595E-02	-0,1703E-02	-0.1274E-02	-0.1154E-02
4.5	-0. 5924E -02	-0.4809E-02	-0,3329E-02	-0.2334E-02	-0,1562E-02	-0.1002E-02	-0.7320E-03	-0.6561E-03
5.0	-0.3406E-02	-0.2796E-02	-0.1960E-02	-0.1379E-02	-0.9174E-03	-0. 5775E-03	-0.4115E-03	-0.3650E-03
5.5	-0.1924E-02	-0.1593E-02	-0.1129E-02	-0.7964E-03	-0.5272E-03	-0. 3255E -03	-0.2263E -03	-0,1984E-03
6.0	-0.1070E-02	-0.8933E-03	-0.6378E-03	-0,4506E-03	-0.2963E-03	-0,1790E-03	-0,1207E-03	-0.1043E-03
6.5	-0.5883E-03	-0.4941E-03	-0.3543E-03	-0.2502E-03	-0.1627E-03	-0. 9565E-04	-0.6188E-04	-0.5232E-04
7.0	-0.3199E-03	-0.2687E-03	-0.1928E-03	-0.1352E-03	-0.8660E-04	- 0. 4907E - 04	-0. 3037E - 04	-0,2507E-04
7.5	-0,1693E-03	-0,1425E-03	-0.1020E-03	-0.7084E-04	-0.4437E-04	-0,2410E-04	-0.1429E-04	-0.1163E-04
8.0	-0.8696E-04	-0.7317E-04	-0.5185E-04	-0.3548E-04	-0.2154E-04	-0,1139E-04	-0.6735E-05	-0.5511E-05
8.5	-0,4301E-04	-0.3590E-04	-0.2506E-04	-0.1681E-04	-0.1012E-04	-0, 5401E-05	-0.3227E -05	-0.2640E-05
9.0	-0.2019E-04	-0.1678E-04	-0.1159E-04	-0.7827E-05	-0.4799E-05	-0.2597E-05	-0.1556E-05	-0.1272E -05
9.5	-0.9222E-05	-0.7686E-05	-0.5416E-05	-0.3708E-05	-0.2299E-05	-0.1255E-05	-0.7539E-06	-0,6151E-06

TABLE III. V_{HF} for the Ar-CO₂ interaction as a function of distance and angle. The angles are in radians; V and r are in Hartree atomic units.

X= COSH	0.9880	6. 9373	0.8482	0.7244	0.5710	0.3942	0.2012	0.0000
~0	0.1551	0.3561	0.5582	0.7606	0.9631	1.1657	1.3682	1.5708
3.0	0.1951E+02	0.8586E+01	0.3411E+01	0.1622E+01	0.9152E+00	0.5948E+00	0.4511E+00	0.4103E+00
4.0	0.2090E+01	0.1422E+01	0.8333E+00	0.4603E+00	0.2519E+00	0.1463E+00	0.9910E-01	0.8590E-01
5.0	0.4197E+00	0.3124E+00	0.1949E+00	0.1075E+00	0.5621E-01	0.3013E-01	0.1863E-01	0.1544E-01
6.0	0.8060E-01	0.6075E-01	0.3807E-01	0.2073E-01	0.1044E-01	0.5237E-62	0.2971E-02	0.2349E-02
7.0	0.1330E-01	0.1008E-01	0.6310E-02	0.3370E-02	0.1621E - 02	0.7500E-03	0.3799E-G3	0,2801E-03
8.0	0.1859E-02	0.1404E-02	0.8598E-03	0.4364E-03	0.1890E-03	0.7137E-04	0,2409E-04	0.1166E-04
9.0	0.3151E-04	0.4026E-05	-0.2334E-04	-0.3742E-04	-0.3253E-04	-0. 2529E -04	-0.1847E-04	-0.1618E-04

TABLE IV. V_{COR} for the Ar-CO₂ interaction as a function of distance and angle. Hartree atomic units.

x=cos0	0,9880	0,9373	0, 8482	0.7244	0.5710	0.3942	0.2012	0.0000
10 -	0.1551	0.3561	0.5582	0,7606	0.9631	1.1657	1.3682	1.5708
3.0	-0.7168E-01	-0.5866E-01	-0.4395E-01	-0.3199E-01	-0.2381E-01	-0.1863E-01	-0.1580E-01	-0.1490E-01
4.0	-0.3271E-01	-0.2715E-01	-0,2043E-01	-0.1462E-01	-0.1040E-01	-0.7710E-02	-0. 6252 E - 02	-0.5794E-02
5.0	-0.1296E-01	-0.1093E-01	-0.8287E-02	-0.5881E-02	-0.4088E-02	-0.2929E-02	-0,2299F-02	-0.2101E-02
6.0	-0.4735E-02	-0.4028E-01	-0.3079E-02	-0.2186E-02	-0.1501E-02	-0.10485-02	-0,7991E-03	-0.7204E-03
7.0	-0.1639E-02	-0.1405E-02	-0.1082E-02	-0,7683E-03	-0.5205E-03	-0.3535E-03	-0.2603E-03	-0.2305E-03
8.0	-0.5429E-03	-0.4670E-03	-0.3602E-03	-0.2539E-03	-0.1683E-03	-0.1096E-03	-0.7637E-04	-0.6572E-04
9.0	-0.1688E-03	-0.1449E-03	-0.1108E-03	-0.7639E-04	-0.4859E-04	-0.2991E-04	-0.1959E-04	-0.1649E-04

before we realized how anisotropic these intermolecular potentials are. When it was found that more terms were required to get the expansion of Eq. (16) to converge, calculations were performed at the additional angles in Tables I and II and the v_n^i determined from a weighted linear least-squares fit in which the points in the tables were given the approximate Gauss weights of 0.02, 0.06, 0.10, 0.14, 0.17, 0.19, 0.21, and 0.22, respectively. The reason this was done is that a leastsquares fit using Gaussian points and weights gives the same optimum fit as the quadrature.

The results of the above procedure are in Tables V-VIII. The fact that $v_2^{\rm HF}$ and $v_4^{\rm HF}$ are consistently larger than $v_4^{\rm HF}$ and the lack of convergence of Eq. (16) at the smallest r values underscore the strong anisotropy of the potential energy surfaces. For the Ar-CO₂ system keeping terms through v_{10}^i gives Eq. (16) converged to within 2 or 3% everywhere except at the smallest rshown. However, the procedure used for He-CO₂ gave stable coefficients only through v_6^i and convergence of Eq. (16) to within about 10% (and worse at the smallest r shown).

Over most of their ranges the v_n^{H} in Tables V-VIII die smoothly and slightly faster than exponentially with r. At large r it is seen that some of the v_n^{HF} become slightly negative as did the V_{HF} of Tables I and III. (Had we not used Rae's correction they would have been much more negative.) A true Hartree-Fock potential would go slightly negative here only because of induction effects that are not included in the electron gas model. Hence, these negative points were considered to be an artifact of the model and omitted in fitting the

TABLE V. The coefficients $v_{\sigma}^{\rm HF}(r)$ in the Legendre expansion of $V_{\rm HF}$ for the He-CO₂ interaction. Hartree atomic units.

r/*	0	2	4	6	8
3.5	0.1817E+00	0.4997E+00	0.3510E+00	0.1763E+00	0.8034E-01
4.0	0.7838E-01	0.2133E+00	0.1371E+00	0.5764E-01	0.1947E-01
4.5	0.3231E-01	0.8787E-01	0.5373E-01	0.2051E-01	0.5816E-02
5.0	0.1274E-01	0.3469E-01	0.2039E-01	0.7247E-02	0.1891E-02
5.5	0.4829E-02	0.1320E-01	0.7510E-02	0.2477 E - 02	0.5759E-03
6.0	0.1755E-02	0.4839E-02	0.2690 E - 02	0.8409E-03	0.1788E-03
6.5	0.6125E-03	0.1718E-02	0.9425 E - 03	0.2780E-03	0.5295E-04
7.0	0.2024E-03	0.5854E-03	0.3212E-03	0.9042E-04	0.1564E-04
7.5	0.6166E-04	0.1890E-03	0.1059E-03	0.2894E - 04	0.4771E-05
8.0	0.1636E-04	0.5672E-04	0.3379E-04	0.8895E-05	0.1278E-05
8.5	0.2979E-05	0.1475E-04	0.1020E-04	0.2740E-05	0.3831E-06
9.0	-0.2991E-06	0.2638E-05	0.2780E-05	0.8167E-06	0.1215E-06
9.5	-0.7251E-06	-0.2504E-06	0.6017 E - 06	0.2319E-06	0.4110E-07

TABLE VI. $v_{\pi}^{COR}(r)$ for He-CO₂. Hartree atomic units.

1					0
* \	U	4	4	0	D
3.5	-0.4873E-02	-0.7504E-02	-0.2919E-02	-0.9281E-03	-0.3068E-03
4.0	-0.3008E-02	-0.4757E-02	-0.1713E-02	-0.4580E-03	-0.1141E-03
4.5	-0.1796E-02	-0.2885E-02	-0.9677E-03	-0.2250E-03	-0.4446E-04
5.0	-0.1045E-02	-0.1698E-02	-0.5323E-03	-0.1103E-03	-0.1844E-04
5.5	-0.5949E-03	-0.9793-E-03	-0.2877E-03	-0.5316E-04	-0.7775E-05
6.0	-9.3319E-03	-0.5561E-03	-0.1537E-03	-0.2529E-04	-0.2721E-05
6.5	-6 1814E-03	-0.3123E-03	-0.8176E-04	-0.1213E-04	-0.8436E-05
7.0	-0.9662E-04	-0.1728E-03	-0.4417E-04	-0.5820E-05	-0.4180E -06
7.5	-0.4990E-04	-0.9299E-04	-0.2379E-04	-0.2408E-05	-0.1781E-06
8.0	-0.2488E-04	-0.4803E-04	-0.1319E-04	-0.9094E-06	+0.3021E-07
8.5	-0.1196E-04	-0.2344E-04	-0.7035E-05	-0.6809E-06	+0.1226E-06
9.0	-0.5617E-05	-0.1087E-04	-0.3284E-05	-0.4664E-06	+0.7783E-08
9.5	-0.2641E-05	-0.4995 E-05	-0.1402E-05	-0.1753E-06	-0.3894E-08

TABLE VII. $v_n^{HF}(r)$ for Ar-CO₂. Hartree atomic units.

r\"	0	2	4	6	8	10
3.0	0.2190E+01	0.6290E+01	0.5973E+01	0.4410E+01	0.2803E+01	0.1572E+01
4.0	0.4153E+00	0.9661E+00	0.5519E+00	0.2315E+00	0.9499E-01	0.3846E-01
5.0	0.9100E-01	0.2141E+00	0.1052E+00	0.3091E-01	0.7562E-02	0.2075E-02
6.0	0.1726E-01	0.4211E-01	0.2019E-01	0.5386E-02	0.1053E-02	0.2345 E-03
7.0	0.2778E-02	0.7069 E - 02	0.3367E-02	0.8293E-03	0.1371E-03	0.2365 E-04
8.0	0.3597E-03	0.1001E-02	0.4931E-03	0.1161E - 03	0.1544E-04	0.1757E-05
9.0	-0.2189E-04	0.9817E-05	0.3823E-04	0.1317E - 04	0.4996E-06	-0.1639E-05

TABLE VIIL $v_n^{COR}(r)$ for Ar-CO₂. Hartree atomic units.

-/*	0	2	4	6	8	10
3.0	-0.2758E-01	-0.3205E-01	-0.1121E-01	-0.3398E-02	-0.9135E-03	-0.2542E-03
4.0	-0.1214E-01	-0.1573E-01	-0.4855E-02	0.1173E-02	-0.2973E-03	-0.8660E-04
5.0	-0.4770E-02	-0.6517E-02	-0.1821E - 02	-0.3423E-03	-0.5455E-64	-0.8626E-05
6.0	-0.1740E-02	-0.2450E-02	-0.6209E-03	-0.9945E-04	-0.1285E-04	-0.1419E-05
7.0	-0.5998E-03	-0.8725E-03	-0.1994E-03	-0.2687E-04	-0.2764E-05	-0.3638E-06
8.0	-0.1938E-03	-0.2985E-03	-0.6259E-04	-0.7160E-05	-0.3754E-06	+0.1509E-07
9.0	-0.5711E-04	-0.9583E-04	-0.2050E-04	-0.1474E-05	-0.1484E-06	+0.7528E-07

J. Chem. Phys., Vol. 64, No. 4, 15 February 1976

.

TABLE DX. Parameters A_{ni} and B_{ni} for He-CO₂ obtained directly by fitting the electron gas estimates of v_{μ}^{BF} and v_{μ}^{COR} . Hartree atomic units.

# =	0	2	4	6	8
Ant	0.172995E+02	0.655752E+02	0.105137E+03	0.178531E+03	0.314919E+03
A	-0.982289E+00	-0.112538E+01	-0.144877E+01	-0.190354E+01	-0.240207E+01
A	-0.917494E-01	-0.766468E-01	-0.522417E -01	-0.239120E-01	0.0 E+00
Bat	0.784153E-01	0.126468E+00	0.118507E+00	0.761871E-01	0.298293E+00
B	-0.628088E+00	-0.663263 E+00	-0.976097E +00	-0.116525E+01	-0.188254E+01
Bas	-0.470607E-01	-0.399192E-01	-0.215588E-01	-0.280915E-01	0.0 E+00

 v_n^{i} , so that a better estimate of the induction effects could be included as in the next section. Also, due to the fact that the He or Ar atom gets very close to the O atoms at some of the smallest r values, some of the v_n^i kink upward at small r; such values were also omitted. Then, the v_n^i were fit to the forms

$$v_{n}^{HP}(r) = A_{n1} \exp(A_{n2}r + A_{n3}r^{2})$$
, (18a)

and

$$v_{a}^{\text{COE}}(r) = -B_{a1} \exp(B_{a2}r + B_{a3}r^{2})$$
, (18b)

by ordinary least-squares fitting of $\ln |v_n^i|$. The forms shown are sufficient to fit the $\ln |v_n^i|$ of the larger v_n^i with a standard deviation of about 1% which corresponds to an error of about 5% in the v_n^i themselves. The expansions in Eq. (18) were truncated to a linear term in the exponential whenever addition of the quadratic term decreased the standard deviation by less than 20%. The results are in Tables IX and X.

As a test of the overall fit we note that when these parameters were used in Eqs. (16) and (18), the parameters for $Ar-CO_2$ gave back all the original points with $4 \le r \le 8$ in Table III with a standard fractional deviation of 3.4%, and the parameters for $He-CO_2$ gave back the original points with 3.5 $\le r \le 7$ in Table I with a standard fractional deviation of about 8%.

C. Addition of van der Waals tail

If one attempts to construct a complete potential energy surface by simply adding together the $V_{\rm HF}$ and $V_{\rm COR}$ of the previous subsection, he gets, as we noted elsewhere,⁴ an attractive well that is much too shallow and lacks proper van der Waals behavior at large distances. To remedy this deficiency and give a potential which is smooth and behaves reasonably everywhere, we use a simple generalization of our method for at-

oms;⁴ namely, we note that $V_{\rm COR}$ is only qualitatively correct² and also small compared to $V_{\rm HF}$ at small distances, so that we are free to scale it without loss of accuracy in the method. Then, we let

$$v_{n}^{\text{COR}}(r) = \begin{cases} -B_{n1}' \exp(B_{n2}r + B_{n3}r^{2}), & r \leq r_{n} \\ -C_{n}(n)r^{-6} - C_{n}(n)r^{-6}, & r \geq r_{n} \end{cases}$$
(19a)

where the van der Wauls C_6 and C_e coefficients are taken from the preceding paper, $^{22,23} r_n$ is the point at which the logarithmic derivatives of the two forms are equal, and B'_{n1} is chosen to make v_n^{COR} continuous at r_n , for n < 4. For n > 4, B_{n1} was scaled by the same factor as was B_{41} . The resulting parameters are in Tables XI and XII. They constitute our best present a priori estimates of the potential energy surfaces.

D. Comparison with experiment and adjustment

Results from a number of experiments capable of giving information about the He-CO₂ and Ar-CO₂ interactions are available. However, to use line broadening,²⁶ rotational relaxation,²⁷ or molecular beam²⁸⁻³⁰ data to make a meaningful test of intermolecular potentials as anisotropic as these requires treatment of the rotationally inelastic collision problem; this is in progress and will be reported later. Thus, except for comparison in the next section with the results of Amdur and Mason,³⁰ the only experimental data that we now consider are the virial coefficients measured by Brewer³¹ and Cottrell *et al.*³² The interaction second virial coefficient (in atomic units) for our angle-dependent potentials is given en by³³

$$B(T) = \pi \int_0^\infty r^2 dr \int_{-1}^1 dx \left\{ 1 - \exp[-V(r, x)/kT] \right\}, \quad (20)$$

where $x = \cos\theta$, k is Boltzmann's constant, and T is the absolute temperature. In evaluating Eq. (20) using the

TABLE X. Parameters A_{ni} and B_{ni} for Ar-CO₂ obtained directly from fitting electron gas estimates. Hartree atomic units.

n =	0	2	4	6	8	10
Ant	0.290852E+02	0.824571E+02	0.128551E+03	0.413298E+03	0.431680E+03	0.565288E+03
A	-0.716288E+00	-0.811806E+00	-0.117577E+01	-0.185135E+01	-0.214596E+01	-0.244616E+01
Ant	-0.869136E-01	-0.753131E-01	-0.477138E-01	U.0 E+00	0.0 E+00	0.0 E+00
Bat	0.273733E+00	0.311774E+00	0.148938E+00	0.106688E+00	0.390843E-01	0.308072E+00
B	-0.650479E+00	-0.62087/E+00	-0.735340E+00	-0.105547E+01	-0.183942E+01	-0.204765E+01
B _{R3}	-0.320299E-01	-0.310717E-01	-0.296750E-01	-0.192219E-01	-0.494781E -01	0.0 E+00

J. Chem. Phys., Vol. 64, No. 4, 15 February 1976

FIG. 3. Interaction second virial coefficients (in cc/mole) vs temperature for He-CO₂ and Ar-CO₂. The points and error bars are experimental results; the solid lines are calculated from the *a priori* intermolecular potentials; and the dashed line is calculated from the adjusted Ar-CO₂ potential.

parameters of Tables XI and XII, the integrations over very small and very large r were done analytically, and that over moderate r was done by two dimensional Gauss-Legendre quadrature using 32 points in each coordinate. The results (in units of cc/mole) are the solid lines in Fig. 3, where one sees that the agreement for He-CO₂ is excellent and limited only by the scatter in the experimental results. However, this agreement is clearly fortuitous as the calculated Ar-CO₂ B(T) lies parallel to but above the experimental results and indicates that our Ar-CO₂ potential is too repulsive. This was surprising to us, and we have no explanation for it; on the basis of our atom-atom results⁴ we expected He-CO₂ to be too repulsive and Ar-CO₂ to be accurate. To improve agreement, one can increase the magnitude of the attractive $V_{\rm COR}$ or decrease the repulsive $V_{\rm HF}$. To know which is appropriate would require more information; we arbitrarily chose to do the latter by scaling down all the Ar-CO₂ A_{n1} uniformly so that the slope and anisotropy of $V_{\rm HF}$ are still those given by the electron gas model. Use of $A'_{n1}=0.771 A_{n1}$ was found to minimize the standard deviation from experi-

TABLE XI. Parameters of the best a priori He-CO₂ intermolecular potential obtained by the present method. Includes the van der Waals potential. Hartree atomic units.

n =	0	2	4	6	8	
A _{s1}	0.172995E+02	0,655752E+02	0.105137E +03	0.178531E+G3	0.3149	919E+03
Anz	-0.982289E+00	-0.112538E+01	-0.144877E+01	-0.190354E+01	-0.2402	07E+01
Ans	-0.917494E-01	-0.766468E-01	-0.522417E-01	-0.239120E-01	0.6	E+00
B'al	0.122126E+00	0.569431E-01	0.252919E-01	0.162599E-01	0.6366	20E-01
Bat	-0.628083E+00	-0.663263E+00	-0.976097E+00	-0.116525E + 01	-0.1882	254E+01
Bas	-0.470607E-01	-0.399192E-01	-0.215588E-01	-0.280915E-01	0.0	E+00
r.	5.72050	6.27735	6.39141	80		e0
Csia)	16.75	3.88	0.0	0.0	0.0	
Ca(m)	278.	290.	57.	0.0	G_ 0	

J. Chem. Phys., Vol. 64, No. 4, 15 February 1976

TABLE XII. Parameters of the best present a priori Ar-CO₂ interaction including the van der Waals potential. Hartree atomic units.

n =	0	2	4	6	8	10
Ant	0.290852E+02	0.824571E+02	0.128551E+03	0.413298E+03	0.431680E+03	0.565288E+03
A	-0.716288E+00	-0.811806E+00	-0.117577E+01	-0.188135E+01	-0.214596E+01	-0.244616E+01
A	-0.869136E-01	-0.753131E-01	-0.477138E-01	0.0 E+00	0.0 E+00	0.0 E+00
B'at	0.599056E+00	0,207391E+00	0.523497E-01	0.374994E-01	0.137376E-01	0.108283E+00
Bn2	-0.650479E+00	-0.620877E+00	-0.735340E+00	-0.105547E+01	-0.103942E+01	-0.204765E+01
Bas	-0.320299E-01	-0.310717E-01	-0.29675GE-01	-0.182219E-01	-0.494781E-01	0.0 E+00
r.,	6.32925	6.90026	6.96450	*0	-0	
C ₆ (n)	114.5	26.6	0.0	0.0	0.0	0.0
C .(n)	2380.	2080.	410.	0.0	0.0	0.0

ment and gives the excellent agreement of the dashed line in Fig. 3. For convenience, the parameters of the resulting $Ar-CO_2$ potential are all given in Table XIII. (It should perhaps be noted that the standard deviation is already a minimum for He-CO₂; variation of the A_{n1} by even 1% makes agreement worse!)

IV. DISCUSSION AND CONCLUSIONS

The total v_n of the final potentials for He-CO₂ (Table XI) and Ar-CO₂ (Table XIII) are plotted in Figs. 4 and 5. Note from them that v_0 and v_2 are the only v_n with appreciable attractive wells and that they emphasize the dominance of the nonspherical parts of the potential at short range. Because of this the v_0 for He-CO₂ ob-

tained by fitting integral scattering cross sections with a simple almost spherical model²⁸ and the v_0 for Ar-CO₂ obtained from fitting the virial coefficient data with a spherical model potential³⁴ bear little similarity to the present v_0 . However, also plotted on Fig. 5 as a dashed line is the v_0 inferred by Mason³⁰ from Amdur's high energy scattering data. Considering the approximations involved in using a spherical model to analyze the scattering data, the fact that our v_0 and theirs cross and have slopes no more different than they are is surprising and must be considered to be excellent agreement.

A contour map of the final $Ar-CO_2$ surface is given in Fig. 6 which shows clearly the shape of the surface and

J. Chem. Phys., Vol. 64, No. 4, 15 February 1976

TABLE XIII. Parameters for the final Ar-CO₂ interaction after inclusion of the van der Waals potential and adjustment to fit virial coefficient data. Hartree atomic units.

nt =	0	2	4	6	8	10
A'at	0,224247E+02	0.635744E+02	0.991128E+02	0.318652E+03	0.332826E+03	0.435837E+03
Ant	-0.716288E+00	-0.811806E+00	-0.117577E+01	-0.188135E+01	-0.214596E+01	-0.244616E+01
Ant	-0.869136E-01	-0.753131E-01	-0.477138E-01	0.0 E+00	0.0 E+00	0.0 E+00
B'1	0.599056E+00	0.207391E+00	0.523497E-01	0.374994E-01	0.137376E-01	0.108283E+00
Bat	-0.650479E+00	-0.620877E+00	-0.735340E+00	-0.105547E+01	-0.103942E+01	-0.204765E+01
Bas	-0.320299E-01	-0.310717E-01	-0.296750E-01	-0.182219E-01	-0.494781E-01	0.0 E+00
rn	6.32925	6.90026	6.96450			60
Ce(n)	114.5	26.6	0.0	0.0	0.0	0.0
Ca(n)	2380.	2080.	410.	0.0	0.0	0.0

J. Chem. Phys., Vol. 64, No. 4, 15 February 1976

location of the minimum. The He–CO₂ surface (not shown) is qualitatively similar, with a minimum 3.05 $\times 10^{-4}$ a.u. deep occurring at $r = 5.7 a_0$ and $\theta = \pi/2$. These surfaces are probably reasonably accurate in the

repulsive region up to the 0.1 a.u. contour; however, the nonphysical behavior of the 1 a.u. contour is due to divergence of the Legendre polynomial expansion and analytic fit of the v_{π} . It was not present in the original

1676

FIG. 6. Contour plot of the $Ar-CO_2$ potential energy surface. The positions of the carbon and oxygen atoms are noted. The contours in the plane give the potential energy felt by an argon atom at that point in atomic units.

results of Table II. Thus, the present analytic fits to these surfaces should not be used for the calculation of properties at energies or temperatures high enough that there is appreciable penetration inside the 0.1 a.u. contour. For such properties or for a study of vibrathemally inelastic collisions, use of the potential surface of Suzukawa²¹ would probably be more appropriate.

Before ending this discussion we point out some of the limitations and weaknesses of the present method and results. First, the comparisons with virial and scattering results indicate that the present surfaces are much better than one might have expected from such a crude model as the electron gas model, but many more studies are needed to see just what the limits of reliability of the model are. In this connection an improvement to the Rac³ exchange correction is needed; had we not used it our a priori Ar-CO2 surface would probably have given better virial coefficients, but our He-CO2 surface would have been too attractive. Second, there is some arbitrariness in our fit of the surfaces. For a molecule as asymmetric as CO2, use of prolate spheroidal coordinates and expansion in spheroidal harmonics would probably have given better convergence at small distances than the present expansion, and the van der Waals potential would also be valid to smaller distances.³⁵ (In the present expansion the distances r_n in to which the van der Waals potential is used are appropriate at angles near $\pi/2$ but too small for angles near 0.) For the present, rigid rotor model scattering calculations could be done in spheroidal coordinates, but if vibrational motion were allowed, it would cause difficulty as the vibrational and spheroidal coordinates

are not orthogonal. Third, our scaling of $V_{\rm COR}$ to match the van der Waals potential makes it much less anisotropic everywhere, and there should really be some short-ranged anisotropic correlation contributions, but we do not presently know how important they are or how to include them in a less than arbitrary way. Finally, because of the way they are constructed, these intermolecular potentials are expected to be rather good in the long range and moderately short range regions but weakest near the bottom of the attractive well. As a result, we expect them to give rather good estimates of the magnitudes of thermal scattering cross sections but not to reproduce accurately any structure that is very sensitive to the well region.

In conclusion, we believe that, notwithstanding their limitations, the present surfaces for these systems are the first to have both realistic long and short range behavior. We are very encouraged by the success of the electron gas-van der Waals potentials in describing the few experimental properties used herein and believe the surfaces are accurate enough to be useful in predicting and understanding many $He-CO_2$ and $Ar-CO_2$ collision phenomena. Scattering calculations to test this hypothesis are in progress.

*Work performed in part under the auspices of the USERDA and supported in part at Brigham Young University by the USERDA and the University of California Los Alamos Scientifle Laboratory through subcontract no. XP5-72554.

¹Present address: Group T-6, Los Alamos Scientific Laboratory, Los Alamos, NM 87545. [†]Present address.

J. Chem. Phys., Vol. 64, No. 4, 15 February 1976

APPENDIX E

van der Waals INTERACTIONS OF CARBON MONOXIDE

(A reprint. See Gregory A. Parker and Russell T Pack, J. Chem. Phys. 64, 2010 (1976).)

(

van der Waals interactions of carbon monoxide*

Gregory A. Parker and Russell T Pack

Department of Chemistry, Brigham Young University, Provo, Utah 84602 and Group T-6, University of California Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545[†] (Received 9 September 1975)

Padé approximant methods and experimental frequency dependent polarizabilities are used to calculate reliable van der Waals C_6 coefficients for the interaction of CO with He, Ne, Ar, Kr, Xe, H, Li, Na, K, Rb, Cs, H₂, N₂, O₂, CO₂, and CO. Error bounds are given for the C_6 coefficients and for the CO oscillator strength sums.

I. INTRODUCTION AND THEORY

In a recent paper¹ (hereinafter called I), one of us calculated van der Waals coefficients for CO_2 interactions using the Padé approximant methods of Langhoff and Karplus² to get the contribution to the polarizability from the ultraviolet part of its spectrum and the method of Nir, Adams, and Rein,³ which views molecular bands as lines of finite width, to get the infrared contribution. In this paper we use this method to calculate the first reliable van der Waals C_6 coefficients for interactions involving carbon monoxide, CO.

As is well known,⁴ the van der Waals C_6 coefficient for the interaction of a Σ -state diatomic molecule such as CO with an S-state atom takes the form

$$C_{\rm s} = C_{\rm s}(0) + C_{\rm s}(2) P_2(\cos\theta), \tag{1}$$

where θ is the angle between the molecular axis and the vector from the center of mass of the molecule to the atom, and P_2 is a Legendre polynomial. Here each coefficient includes both induction and dispersion contributions:

$$C_{a}(L) = C_{a}^{isd}(L) + C_{a}^{dis}(L), \qquad (2)$$

The induction terms are simply given (in atomic units) by⁴

$$C_{\rm g}^{\rm ind}(0) = C_{\rm g}^{\rm ind}(2) = \alpha(A)\mu^2$$
, (3)

where μ is the permanent dipole moment of the molecule and $\alpha(A)$ is the static dipole polarizability of the atom. Using the experimental value⁵ $\mu(CO) = -0.112$ D = -0.0441 a.u. consistent with the use of experimental polarizabilities, so that the resulting van der Waals potential has been averaged over the ground state vibrational motion, one obtains the $C_6^{ind}(L)$ directly.

If the polarizability anisotropy ratio, $\kappa = (\alpha_u - \alpha_u)/(\alpha_u + 2\alpha_u)$, is known as a function of frequency, $C_{6}^{\text{dis}(2)}$ can be calculated accurately.⁶ Unfortunately, for CO values of κ have been reported at only two frequencies ($\kappa = 0.089$, at[†] $\omega = 0.0720$ a.u. and 0.100 at⁶ 0.0934 a.u.), and their difference is opposite that necessitated by the spectrum of CO and thus wrong. We assume that the average of the two is the correct value and negligibly different from that at zero frequency. Then, as we have shown elsewhere, ⁴ one can obtain reasonable bounds on $C_6^{\text{dis}}(2)$ from

$$C_6^{\rm dis}(2) = a_8 C_6^{\rm dis}(0),$$
 (4)

with

2010 The Journal of Chemical Physics, Vol. 64, No. 5, 1 March 1976

 $\frac{\alpha_{\eta}^{3/4} - \alpha_{1}^{3/4}}{\alpha_{0}^{3/4} + 2\alpha_{0}^{3/4}} \leq a_{0} \leq \kappa,$

which gives the estimate $a_{s} = 0.083 \pm 0.017$

. (6)

(5)

for CO interactions.

The remaining part of C_6 , $C_6^{415}(0)$, is determined in the following section using, with minor modifications, the method of Paper I, which briefly stated is as follows: The experimental frequency dependent polarizability is obtained from refractive index data using the Lorenz-Lorentz equation; then, it is fit using a finite linewidth dispersion term for the ir part and a Cauchy expansion for the uv part. Then, the resulting sum rules (coefficients of the Cauchy expansion) are used to construct upper and lower Padé bounds to the polarizability. From these, effective oscillator strengths and excitation frequencies are obtained from which upper and lower bounds to $C_6^{416}(0)$ are obtained.

II. CALCULATIONS AND RESULTS

As input data we used values of the refractive index η of CO at 94 wavelengths ranging from 237, 9-13 000 nm reported by Ländolt and Bornstein⁹ and the International Critical Tables.¹⁰ We were unable to find any newer measurements. The frequency-dependent average polarizability $\left[\alpha = \frac{1}{3}(\alpha_n + 2\alpha_1)\right]$ was obtained at each frequency from the Lorenz-Lorentz equation³

$$\alpha(\omega) = \frac{3}{4\pi n} \left(\frac{\eta^2 - 1}{\eta^2 + 2} \right) , \qquad (7)$$

where n is the number density of CO molecules. The Benedict-Webb-Rubin equation of state for CO of

TABLE I. Oscillator strength sums for CO. The ultraviolet contributions were obtained directly from fitting Eq. (9) and the infrared contributions from expansion of the first term in Eq. (9) after fitting: S(0) is from the Reiche-Thomas-Kuhn sum rule. All are in Hartree atomic units.

k	S ^{ur} (k)	S ^{lr} (h)	Stot(b)
0	14.0000	1.37×10-5	14.0000
-2	13.0891 ± 0.0002	0.142 ± 0.003	$13,231 \pm 0.003$
- 4	47.842±0.055	1.48×10 ³	1.53×10^{3}
-6	318.6±5.7	1.51×10^{7}	1.51×10'
-9	2800 ± 230	1.53×1011	1.53×10 ¹¹
-10	26500 ± 3000	1.59×10 ¹⁵	1.59×1015

Copyright © 1976 American Institute of Physics

TABLE II. Effective oscillator strengths f_m , frequencies ω_m , and widths γ_n for CO. Here $A_n = f_n / \omega_n^2$. The parameters for x=1 were obtained from Eq. (9). On the others u and l label parameters from the upper and lower bounding Pade approximants. Hartree atomic units.

n	fn	A _n	ωπ	γ _n
1	1.36874 E-5	0.1415644	9.832942E-3	3.040752 E-4
24	13.13886	6.919783	1.377947	0.0
21	5.539610	9.959741	0.7457883	0.0
34	0.8611361	6.169317	0.3736090	0.0
31	0.3271316	3.129359	0.3233207	0.0

Schiller and Canjar¹¹ gives as the conversion factor from measurements at STP to $\alpha(\omega)$ in atomic units

$$3/(4\pi n) = 59926.98 a_0^3$$
. (8)

 $\alpha(0)$ can also be obtained from dielectric constant measurements¹² via the Clausius-Mosotti equation. ¹³ and the value $\alpha(0) = 13.21 \pm 0.13 a_0^3$ thus obtained is consistent with the $\alpha(0) = S(-2)$ determined below from refractive index data but sufficiently uncertain that it could not be used to improve accuracy.

The experimental $\alpha(\omega)$ were then fit by the formula (see Paper I)

$$\operatorname{Re}\alpha(\omega) = \frac{A_1[1-(\omega/\omega_1)^2]}{[1-(\omega/\omega_1)^2]^2+(\gamma_1\omega/\omega_1^2)^2} + \sum_{k=0}^{4} S^{n\nu}(-2k-2)\omega^{2k},$$
(9)

where the first term is the contribution of the ir spectrum of CO. and the uv contribution has been expanded in a Cauchy series. The parameters in (9) were determined by an iterative procedure in which the three parameters in the ir term and S(-10) were calculated using a nonlinear flexible tolerance minimization program14 which included the Stieltjes constraints, 2 and S(-2) through S(-8) were calculated using a linear least squares method. This procedure gave a root mean square deviation of 0.041 a_0^3 , which is half that of the 2 term fit of Nir, Adams, and Rein.3

2011

The resulting oscillator strength sums $S^{uv}(k)$ are given in Table I. These were used to calculate the [2, 1] Padé approximants² from which the effective oscillator strengths and effective frequencies of Table II and upper and lower bounds to the $C_s^{dis}(0)$ could be obtained as in Paper I. However, the Padé methods treat the $S^{uv}(k)$ as though they were exact and had been determined with an infinite number of terms in the summation in Eq. (9). To get an estimate of the additional error thus introduced, we varied $S^{uv}(-10)$, which is not needed by the [2, 1] Padé approximants, over the entire range allowed by the Stieltjes constraints to see what values of the other S(k) and of $C_6^{dis}(0)$ that would generate. That gave the error limits shown in Table I, but because the original data were quite smooth and the uncertainties in the S(k) are quite small, it only widened the error bounds on the $C_6^{dis}(0)$ slightly.

The resulting $C_8^{dis}(0)$ for the interaction of CO with a number of partners (using the sum rules from Refs. 1 and 2 for the other atoms and molecules) are given in Table III. The numbers shown are the means of the best Padé bounds, but the uncertainties include the range of values generated by the uncertainties in the S(k). Also in Table II are the induction and angle-dependent parts of C_6 for the partners for which Eq. (1)-(3) are adequate. The induction terms are very small because the dipole moment of CO is so small.

Before concluding we note that the C_e coefficients discussed herein are only defined within the Born-Oppenheimer approximation, and only the electronic polarizability should be used in calculating $C_6^{215}(0)$. In a future publication, 4 we discuss the vibrational courdinate dependence of C_e in detail and show that. to a good approximation, the experimental quantities needed in calculating C_{e} are the $S^{uv}(k)$ rather than the $S^{tot}(k)$. In the present case the ir spectrum of CO contributes only about 1% of the static polarizability, and inclusion of the ir contribution (n = 1 term of Table II) would change the $C_6^{\rm dis}$ of Table III by a completely negligible amount (less than 0.1%). In our previous paper on $CO_2 C_6$ coef-

TABLE III. Van der Waals Ce coefficients for the interaction of CO with various partners. All are in Hartree atomic units $(\epsilon^2 a_0^5)$.

Partner	$C_6^{\rm dis}(0)$	$C_6^{ind}(0)$	$C_6^{\rm tot}(0)$	$C_{\xi}^{\mathrm{dis}}(2)$	$C_6^{ind}(2)$	C ^{tot} ₆ (2)
н	23.0±0.9	8.74 E-3	23.0±0.9	1.92±0.47	8.74 E-3	1.92±0.47
Li	201.9±4.1	3.18 E-1	202.2 ± 4.1	16.8 ± 3.8	3.18 E-1	17.1 ± 3.8
Na	246 ± 16	3.25 E-1	247 ± 16	20.5±5.7	3.25 E-1	20.8 ± 5.7
K	363 ± 24	5.59 E-1	364 ± 24	30.3 ± 8.4	5.59 E-1	30.8±8.5
Rb	412 ± 28	6.13 E-1	412 ± 28	34.3 ± 9.7	6.13 E-1	34.9 + 9.7
Ca	355±16	6.92 E-1	356 ± 16	29.6 ± 7.5	6.92 E-1	30.3 ± 7.6
He	11.2 ± 0.8	2.69 E-3	11.2 ± 0.8	0.93 ± 0.27	2.69 E-3	0.93 ± 0.27
Ne	23.8±2.5	5.18 E-3	23.8 ± 2.5	1.98 ± 0.65	5.18 E-3	1.98 + 0.65
Ar	78.2±7.6	2.15 E-2	78.2±7.6	6.5 ± 2.1	2.15 E-2	6.5+2.1
Kr	111 ± 12	3.25 E-2	111 ± 12	9.3 ± 3.0	3.25 2-2	9.3+3.1
Xe	192 ± 25	5.31 E-2	192 ± 25	16.0±5.7	5.31 E-2	16.0 ± 5.7
H ₂	32.1 ± 1.5					
N ₂	80.7±6.9					
02	62.8±3.3					
CO,	128.6±8.7					
co	88.4±9.7					

J. Chem. Phys., Vol. 64, No. 5, 1 March 1976

G. A. Parker and R. T Pack: van der Waals interactions of carbon monoxide

ficients.¹ this ir contribution was inadvertently included, and the C. coefficients obtained there should be revised downward by about 1% (which is still well within the stated uncertainity).

*Work performed in part under the auspices of the USERDA and supported in part at Brigham Young University by the USERDA and the University of California Los Alamos Scientific Laboratory through Subcontract No. XP5-72554.

†Present address of both authors.

¹R. T Pack, J. Chem. Phys. 61, 2091 (1974).

- ²P. W. Langhoff and M. Karplus, J. Chem. Phys. 53, 233 (1970); P. W. Langhoff and M. Karplus, J. Opt. Soc. Am. 59, 363 (1969); P. W. Langhoff, J. Chem. Phys. 57, 2604 (1972)
- ³(a) S. Nir, S. Adams, and R. Rein, J. Chem. Phys. 59, 3341 (1973); (b) S. Nir, S. Adams, and R. Rein, Int. J. Quantum Chem. Symp. 6, 295 (1972).

See, for example, R. T Pack, J. Chem. Phys. 64, 1257

(1976).

- ⁽¹³⁷⁶⁾.
 ⁽¹³
- Phys. 55, 2126 (1971).
- ⁷N. J. Bridge and A. D. Buckingham, Proc. R. Soc. London Ser. A 295, 334 (1966).
- ⁸R. L. Rowell and G. M. Aval, J. Chem. Phys. 54, 1960 (1971).
- ⁹Ländolt-Bornstein, Zahlenwerte und Functionen (Springer, Berlin, 1962), 6 Auflage, II Band, 8 Teil, pp. 871-889.
- ¹⁶International Critical Tables, edited by E. W. Washburn (McGraw-Hill, New York, 1930), Vol. VII, pp. 6-11.
- ¹¹F. C. Schiller and L. N. Canjar, Chem. Eng. Proc. Symp. Ser. 49, 67 (1953).
- ¹²Hans-Joachim v. Braunmühl, Phys. Z. 28, 141 (1927).
- ¹²J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964), pp. 853-861. ¹⁴D. M. Himmelblau, Applied Nonlinear Programming
- (McGraw-Hill, New York, 1972), pp. 458-468.

J. Chem. Phys., Vol. 64, No. 5, 1 March 1976

APPENDIX F

van der Waals INTERACTIONS OF π -STATE LINEAR MOLECULES WITH ATOMS. C₆ FOR NO($\chi^2\pi$) INTERACTIONS.

(A reprint. See Glen C. Nielson, Gregory A. Parker, and Russell T Pack. J. Chem. Phys. <u>64</u>, 2055 (1976).)

van der Waals interactions of π -state linear molecules with atoms. C_6 for NO($X^2\pi$) interactions*

Glen C. Nielson, Gregory A. Parker, and Russell T Pack

Department of Chemistry, Brigham Young University, Provo, Utah 84602

and Group T-6, University of California Los Alamos, Scientific Laboratory, Los Alamos, New Mexico 87545[†] (Received 23 October 1975)

Formulas are derived for the van der Waals C_a coefficients for the interaction of a diatomic molecule in a il electronic state with an S-state atom. Two triatomic states arise from the degenerate [I state. The average of the two energies has the usual Legendre polynomial (P_L) angular dependence, but the difference in energies of the two states is shown to have associated Legenere polynomial (P_L^M) with M = 2) angular dependence. Procedures for including spin orbit coupling are included, and the extension to interactions of Δ - and Φ -state molecules is discussed. Values of the spherical part of the C_6 coefficients for the interaction of NO with He, Ne, Ar, Kr, Xe, H, Li, Na, K, Rb, Cs, H₂, N₂, O₂, CO, CO₂, and NO are obtained from frequency-dependent parizability data using Padé approximants. In addition, estimates of all the induction and angle-dependent parts of C_6 are given for the NO-atom interactions.

I. INTRODUCTION

When a diatomic molecule in Π electronic state interacts with an S-state atom, the interaction breaks the degeneracy of the Π state and two potential energy surfaces arise, one for which the electronic wavefunction is symmetric under reflection in the triatomic plane and one for which it is antisymmetric. In connection with our calculation of these two surfaces for the Ar-NO system¹ using the electron gas model, we became interested in also determining the van der Waals potentials for such systems. This paper presents the results of our study.

In the next section we derive the formula for the general second order van der Waals C_n coefficient for the nonrelativistic interaction of a Il state diatomic with an S-state atom using the notation of our recent paper on those interactions for Σ -state molecules.² Two surfaces are obtained. Others^{3,4} have combined these two surfaces by introducing dependence on an azimuthal angle; however, when one does that he must remember that the additional coordinate is an *electronic* coordinate and cannot be treated as a nuclear coordinate in collision studies. To avoid confusion, we stay strictly within the Born-Oopenheimer approximation and keep two surfaces.

In Sec. II we also look in detail at the C_6 coefficient and discuss ways to estimate the parts of it. In Sec. III we apply these methods to the interactions of NO (X^2II) , obtaining the spherical part of C_6 from frequency-dependent polarizability data using the Padé approximant methods of Langhoff and Karplus⁷ and esimating the angle-dependent parts of C_6 from available data. Then, in Sec. IV we show how to include spinorbit coupling and also discuss the results.

II. THEORY

A. Derivation of general formulas

We consider a neutral molecule A in a Π electronic state and a neutral S-state atom B interacting at a distance large enough that electron exchange and overlap are negligible. In this section a completely nonrelativistic, spin-free Hamiltonian is used; spin-orbit ef-

The Journal of Chemical Physics, Vol. 64, No 5, 1 March 1975

fects can be included afterward as discussed in Sec. IV. Thus, were it not for the interaction, the correct zeroth-order electronic states for the molecule, regardless of total spin S, would be denoted by $|\Lambda, M_{*}\rangle$ = $|\pm 1, M_{a}\rangle$, where A is the component of electronic orbital angular momentum along the molecular axis and M, is the component of electronic spin angular momentum S along the same axis. Since M_s is being treated as a good quantum number at present, we will suppress it and write $|\Lambda\rangle$ for $|\Lambda, M_s\rangle$. Now, when the atom is present, the only symmetry remaining, in general, is reflection in the plane of the three atoms, so that the degeneracy of (1) and (-1) is removed. If the vaxis is kept perpendicular to the triatomic plane (Fig. 1), the proper zeroth-order molecular wavefunctions $|\sigma\rangle$ are those which have definite parity o under the operation σ which reflects x into -x (cut leaves spin space alonce); that is,

$$\sigma |\sigma\rangle = (-1)^{\sigma} |\sigma\rangle, \tag{1}$$

where $\sigma=0$ and 1 give the even (+) and odd (-) states, respectively. However, as we have discussed elsewhere, 8 one has

$$\sigma |\Lambda\rangle = (-1)^{s_{\Lambda}} |-\Lambda\rangle, \qquad (2)$$

FIG. 1. Coordinate axes systems used for the interaction of a \Im -state molecule A (in this case NC) with an S-state stom B (such as Ar). The x axis of both systems is perpendicular to the plane of the three atoms.

Copyright @ 1976 American Institute of Physics 2055
(10)

Nielson, Parker, and Pack: interactions of linear molecules with atoms

E(

where s_A is a natural parity dependent on phase conventions. (For our NO example, $s_A = 0$.) Similarly, if $|0\rangle$ is the ground (S) state wavefunction of atom B, it will automatically have some parity s_B under σ ,

$$\sigma \left| 0 \right\rangle = (-1)^{s_{\mathrm{B}}} \left| 0 \right\rangle, \tag{3}$$

(It happens that $s_{\rm B} = 0$ for all the atoms used as examples in this paper.) With projection techniques one easily shows that the proper products to take as the two zeroth-order solutions of the triatomic problem are

$$|\sigma,0\rangle = |\sigma\rangle|0\rangle = 2^{-1/2}[|1\rangle + (-1)^{s_A+s_B+\sigma}|-1\rangle]|0\rangle. \quad (4)$$

The long range potential is obtained by solving the electronic Schrödinger equation in the usual permrbative fashion.⁷ The Born-Oppenheimer electronic Hamiltonian is written in the form,

$$H_e = H_A + H_B + V, \tag{5}$$

where H_A and H_B are the electronic Hamiltonians of molecule A and atom B, and V is the electrostatic interaction. Because atom B has no permanent multipole moments, the first order interaction energy vanishes at large distances,

$$E^{(1)} = \langle 0, \sigma | V | \sigma, 0 \rangle = 0, \tag{6}$$

The second order energy can be written, in general, in terms of a Green's function as

$$E^{(2)} = -\langle 0, \sigma | (V - E^{(1)}) [H_{A} + H_{B} - E_{0}(A) - E_{0}(B)]^{-1} \times (V - E^{(1)}) | \sigma, 0 \rangle.$$
(7)

In evaluating t.is, one is free to use any spectral representation of the Green's function he wishes. For convenience we choose to use the complete set of functions $|\nu, n\rangle = |\nu\rangle |n\rangle$, where $|\nu\rangle$ and $|n\rangle$ are the eigenfunctions of A and B, respectively, which have definite A and $M_L(B)$ rather than definite reflection parity σ . Then, because of the symmetry of B, Eq. (7) becomes

$$E^{(2)} = -\sum_{\nu} \sum_{n}' \frac{\langle 0, \sigma | V | \nu, n \rangle \langle n, \nu | V | \sigma, 0 \rangle}{\epsilon_{\nu} + \epsilon_{n}} , \qquad (8)$$

where $\epsilon_{\nu} = E_{\nu}(A) - E_0(A)$, etc., and the prime implies omission of the n = 0 term. However, the $\nu = |\pm 1\rangle$ induction terms are included.

When the multipole expansion for V is substituted into Eq. (8), $E^{(2)}$ takes on the usual van der Waals form.

$$(9) = -\sum_{k=0}^{k} \gamma^{-k} C_k,$$

where r is the distance from the center of mass of the nuclei of A to the nucleus of B, and in the notation of our recent work² on Σ -state interactions, C_k is given by

 $C_{k} = \sum_{j=3}^{k-3} \Delta_{j,k-j},$

$$\Delta_{jj'} = \frac{1}{2} \sum_{i=1}^{j-2} \sum_{m} F(j,l,m) F(j',j'-j+l,-m)(-1)^{-m}$$

$$\times \sum_{\nu} \sum_{n} \sum_{n'} \frac{\langle \sigma | Q_i^m(A) | \nu \rangle \langle \nu | Q_{j'-j+l}^m(A) | \sigma \rangle}{\epsilon_n (\epsilon_{\nu} + \epsilon_n)}$$

$$\times f_{0m}(j-1-l,j-1-l; B). \tag{11}$$

Here F(j, l, m) is a known coefficient, ^{2,7,8} the f_{0n} are the usual⁹ 2^{j-1-1} -pole oscillator strengths of atom B, and the $Q_I^m(A)$ are the multipole moment operators of A (in atomic units),

$$Q_{1}^{m}(\mathbf{A}) = \left[4\pi/(2l+1)\right]^{1/2} \sum_{i \in \mathbf{A}} Z_{i} r_{i\mathbf{A}}^{1} Y_{1}^{m}(\theta_{i}, \phi_{i}).$$
(12)

The sum in Eq. (12) is over all nuclei and electrons belonging to molecule A with coordinates measured from the center of mass of the nuclei of A and the z' axis taken to point along r as in Fig. 1.

To simplify evaluation of the matrix elements it. Eq. (11) we transform from the present coordinates (the primed set in Fig. 1) to a new set (unprimed in Fig. 1) in which the z axis points along the molecular axis R. In doing so, the x axis is kept perpendicular to the plane of the three atoms so that reflection in the triatomic plane will be the same (x - -x) in both systems. To achieve this rotation through angle ϑ about x using Euler angles, we rotate the axes by $\alpha = 3\pi/2$ around z', then by $\beta = \theta$ around the resulting y'' axis, and then by $\gamma = \pi/2$ about the new z axis. The effect of this rotation on the multipole moment operators is

$$Q_{I}^{m}(\hat{r}=\hat{z}) = \sum_{\mu=-1}^{2} D_{\mu m}^{I}(3\pi/2, \theta, \pi/2) Q_{I}^{\mu}(\hat{R}=\hat{z}), \qquad (13)$$

where the Wigner D functions are the representations of of the rotation group.^{10,11} This gives

$$\Delta_{jj^{0}} = \frac{1}{2} \sum_{l=1}^{j-2} \sum_{m} F(j,l,m) F(j',j'-j+l,-m)(-1)^{-m} \sum_{\mu} \sum_{\mu'} D^{j'-j+l}_{\mu m} D^{j'-j+l}_{\mu',-m} \sum_{\nu} \sum_{n'} \frac{\langle \sigma | Q^{\mu}_{j} | \nu \rangle \langle \nu | Q^{\mu'}_{j'-j+l} | \sigma \rangle}{\epsilon_{n} \langle \epsilon_{\nu} + \epsilon_{n} \rangle} f_{jn}(j-1-l,j-1-l),$$
(14)

where we have surpressed the arguments of the D functions and also the A and B labels where ν and n make them clear. Coupling the two Wigner D functions together via the Clebsch-Gordan theorem^{10,12} gives

$$\Delta_{jj} = \frac{1}{2} \sum_{l=1}^{j \neq \omega} \sum_{L} \alpha(L,l,j,j') \sum_{\mu} \sum_{\mu} C(l,j'-j+l,L;\mu,\mu',\mu+\mu') D^{L}_{\mu+\mu',0} \sum_{\nu} \sum_{n'} \frac{\langle \sigma | Q^{\mu}_{1}| \nu \rangle \langle \nu | Q^{\mu'}_{j,j+l}| \alpha \rangle}{\epsilon_{\eta}(\epsilon_{\nu}+\epsilon_{\eta})} f_{0,n}(j-1-l,j-1-l),$$
(15)

where²

$$\alpha(L,l,j,j') = \sum_{m} (-1)^{m} F(j,l,m) F(j',j'-j+l,-m) C(l,j'-j+l;L,m,-m,0),$$

$$(-1)^{j'-l+l+L} \left[(2j-1)! (2j'-1)! \right]^{1/2}$$
(16)

$$= \frac{(-1)^{j} - (-1)^{j}}{(2j-2l-2)!} \left[\frac{(2j-1)!(2j-1)!}{(22)!(2j'-2j-2l)!} \right]^{j/2} C(j-1,j'-1,L;0c0) W(j-l-1,l,j'-1,L;j-1,j'-j+l),$$
(17)

J. Chem. Phys., Vol. 64, No. 5, 1 March 1976

and W is a Racah coefficient.¹³ For those values of the parameters for which α is nonzero, it reduces to

$$\alpha(L,l,j,j') = \frac{(-1)^{(l-j'+L)/2-l}(j+j'-L-2)!\binom{j+j'+L-2}{2}!}{(2j-2l-2)!\binom{j+j'-L-2}{2}!\binom{(j-j'+L)!}{2}!\binom{(j'-j+L)!}{2}!\binom{(2L+1)(j-j'+L)!(j'-j+L)!}{(j'-j+2l+1+L)!(j'-j+2l-L)!}}^{1/2}.$$
 (18)

Use of the definition [Eq. (4)] for $|\sigma\rangle$, the *m*-type selection rule, and the fact that state $|\nu\rangle$ has a well-defined angular momentum projection Λ_{ν} along the molecular axis allows the sums over μ and μ' in Eq. (15) to be done and gives

$$\Delta_{jf'} = \frac{1}{4} \sum_{l=1}^{j=2} \sum_{L} \alpha(L, l, j, j') \sum_{\nu} \sum_{n}' \frac{f_{0n}(j-1-l, j-1-l)}{\epsilon_{n}(\epsilon_{\nu}+\epsilon_{n})} \left[D_{0,0}^{L} C(l, j'-j+l, L; 1-\Lambda_{\nu}, \Lambda_{\nu}-1, 0) \langle 1 | Q_{l}^{1-\Delta_{\nu}} | \nu \rangle \langle \nu | Q_{j,-l+l}^{\Lambda_{\nu}-1} | 1 \rangle \right. \\ \left. + D_{0,0}^{L} C(l, j'-j+l, L; -1-\Lambda_{\nu}, \Lambda_{\nu}+1, 0) \langle -1 | Q_{l}^{-1-\Lambda_{\nu}} | \nu \rangle \langle \nu | Q_{j,j+l}^{\Lambda_{\nu}+1} | -1 \rangle + (-1)^{s_{\Lambda}+s_{B}+\sigma} D_{2,0}^{L} C(l, j'-j+l, L; 1-\Lambda_{\nu}, \Lambda_{\nu}+1, 2) \langle 1 | Q_{l}^{1-\Lambda_{\nu}} | \nu \rangle \langle \nu | Q_{j,-j+l}^{\Lambda_{\nu}+1} | -1 \rangle + (-1)^{s_{\Lambda}+s_{B}+\sigma} D_{2,0}^{L} C(l, j'-j+l, L; -1-\Lambda_{\nu}, \Lambda_{\nu}-1, -2) \langle -1 | Q_{l}^{-1-\Lambda_{\nu}} | \nu \rangle$$

 $\times \langle \nu | Q_{j'-j+l}^{\Lambda \nu-1} | 1 \rangle].$

(19)

(20)

(22)

15

 $D_{M,\theta}^{L}(3\pi/2,\theta,\pi/2) = [4\pi/(2L+1)]^{1/2}Y_{L}^{M^{*}}(-\theta,-\pi/2),$

$$= \left[\frac{(L-M)!}{(L+M)!} \right]^{1/2} P_{L}^{M}(\cos\theta) e^{iH\pi/2}.$$
(21)

Using this and the relation

$$Y_L^{-\mu} = (-1)^{\mu} Y_L^{\mu^*},$$

to avoid dealing with P_L^{-2} , we have

$$\Delta_{JJ'} = \frac{1}{4} \sum_{i=1}^{J-2} \sum_{L} \alpha(L, l, j; j') \sum_{\nu} \sum_{n} \frac{f_{0n}(j-1-l, j-1-l)}{\epsilon_{n}(\epsilon_{\nu}+\epsilon_{n})} \left\{ P_{L}^{3}(\cos\theta) \left[C(l, j'-j+l, L; 1-\Lambda_{\nu}, \Lambda_{\nu}-1, 0)(1|Q_{l}^{1-\Lambda_{\nu}}|\nu) \times (\nu|Q_{j'-j+l}^{\Lambda_{\nu}+1}|1) + C(l, j'-j+l, L; -1-\Lambda_{\nu}, \Lambda_{\nu}+1, 0)(-1|Q_{l}^{1-\Lambda_{\nu}}|\nu) \langle \nu|Q_{j'-j+l}^{\Lambda_{\nu}+1}|-1\rangle \right] - (-1)^{s_{\Lambda}s_{R}s_{\nu}} \left(\frac{(L-2)!}{(L+2)!} \right)^{1/2} \times P_{L}^{2}(\cos\theta) \left[C(l, j'-j+1, L; 1-\Lambda_{\nu}, \Lambda_{\nu}+1, 2)(1|Q_{l}^{1-\Lambda_{\nu}}|\nu) \langle \nu|Q_{j'-j+1}^{\Lambda_{\nu}+1}|-1\rangle + C(l, j'-j+l, L; -1-\Lambda_{\nu}, \Lambda_{\nu}-1, -2) \times (-1|Q_{l}^{1-\Lambda_{\nu}}|\nu) \langle \nu|Q_{j'-j+l}^{\Lambda_{\nu}+1}|1\rangle \right] \right\}.$$
(23)

Thus, it is seen that in addition to the ordinary Legendre polynomial P_L^0 angle-dependent terms which are essentially the same as those obtained for the interactions of Σ -state molecules,² the natural expression for the C_n for Π -state molecules also involves the associated Legendre polynomials P_L^2 . Since the $P_L^0 = P_L$ form a complete set, one could express the P_L^2 as linear combinations of the P_L but, as we will show in a future paper¹ on collisions in these systems, it is convenient to keep the P_L^2 in there. Also, the fact that $P_L^2 = 0$ when $\theta = 0$ or π makes it clear that the difference in energies of the two states with different σ vanishes, as it should, when the triatomic system is linear.

From Eq. (23) one could generate explicit expressions for any C_{π} coefficient desired as we recently did in getting coefficients through C_{6} for Σ -state molecules.² However, there is presently not enough information available for most Π -state molecules to calculate anything pase C_{6} with any reliability; hence, we only consider C_{6} in the next subsection. Before doing so, we note in passing that the procedure just presented can be extended very simply to treat van der Waals interactions of molecules in Δ , Φ , etc. (Λ = 2, 3, etc.) states. Everything goes through as before except that in Eq. (4) one has

$$|\sigma\rangle = 2^{-1/2} [|\Lambda\rangle - (-1)^{s_{A^{3}B^{*\sigma}}} - \Lambda\rangle].$$
(24)

Equation (15) is obtained as at present, but Eqs. (19) and (23) are generalized, and the angle dependence obtained involves the P_L^{ISAI} in addition to the usual P_L^0 .

B. The C6 coefficient

Let us now construct simpler explicit formulas for C_{6} . We start from Eq. (10),

$$C_6 = \Delta_{33}, \tag{25}$$

and from Eq. (15), rather than Eq. (23), to make comparison with the usual formulas easier. Thus, C_6 is given by

$$C_{6} = \frac{1}{2} \sum_{L=0}^{2} \alpha(L, 1, 3, 3) \sum_{\mu} \sum_{\mu'} C(1, 1, L; \mu, \mu', \mu + \mu')$$
$$\times D_{\mu+\mu', 0}^{L} \sum_{\nu} \sum_{n}' \frac{\langle \sigma | Q_{+}^{\mu} | \nu \rangle \langle \nu | Q_{1}^{\mu'} | \sigma \rangle}{\epsilon_{n}(\epsilon_{\nu} + \epsilon_{n})} f_{0n}(1, 1). \tag{26}$$

J. Chem. Phys., Vol. 64, No. 5, 1 March 1976

2057

210

We break this up into induction and dispersion contributions.

$$C_6 = C_6(\text{ind}) + C_5(\text{dis}), \tag{27}$$

and consider each separately.

1. Induction terms

The induction contributions come from the terms with $|\nu\rangle = |1\rangle$ and $|-1\rangle$. Noting that $-1 \le \mu, \mu' \le 1$, one sees that all matrix elements like $(-1;Q_1^{\mu}|1)$ are zero due to the m-type selection rule, and all that survive are the $\mu = \mu' = 0$ terms, so that $C_{\rm g}(\text{ind})$ becomes

$$C_{0}(\text{ind}) = \frac{1}{4} \sum_{L=0}^{2} \alpha(L, 1, 3, 3)C(1, 1, L; 0, 0, 0)D_{0,0}^{L} \alpha(B)$$

$$\times [\langle 1 | Q_{1}^{0} | 1 \rangle \langle 1 | Q_{1}^{0} | 1 \rangle + \langle -1 | Q_{1}^{0} | -1 \rangle$$

$$\times \langle -1 | Q_{1}^{0} | -1 \rangle], \qquad (28)$$
where $\alpha(B)$, given by

$$\alpha(\mathbf{B}) = \sum_{n=1}^{n} f_{0n} \epsilon_{n}^{-2}, \qquad (29)$$

is the usual static dipole polarizability of atom B. The matrix elements left here are all equal to the ordinary dipole moment of A, due to

$$\mu(\mathbf{A}) = \langle \mathbf{1} | Q_1^0 | \mathbf{1} \rangle = (-1)^{s_{\mathbf{A}}} \langle \sigma \langle -1 \rangle | Q_1^0 | \mathbf{1} \rangle$$
$$= (-1)^{s_{\mathbf{A}}} \langle -1 | \sigma Q_1^0 | \mathbf{1} \rangle = (-1)^{s_{\mathbf{A}}} \langle -1 | Q_1^0 \sigma | \mathbf{1} \rangle$$
$$= \langle -1 | Q_1^0 | -1 \rangle.$$
(30)

Here σ only need reflect the molecular coordinates, and we have used the commutation relation⁶

$$-\sigma Q_1^m = Q_1^m \sigma. \tag{31}$$

Use of Eq. (21) and evaluation of the coefficients in Eq. (28) gives

$$C_{6}(ind) = C_{6}(0, ind) + C_{8}(2, ind) P_{2}^{0}(\cos\theta),$$
 (32a)

where

$$C_{6}(0, ind) = C_{6}(2, ind) = \alpha(B)\mu^{2}(A),$$
 (32b)

which is exactly the formula obtained for Z-state molecules, so that nothing new is needed for this term for IT states.

2. Dispersion terms

The dispersion contribution is given by the terms in Eq. (26) for which $|\nu\rangle \neq |\pm 1\rangle$ and $n \neq 0$. The matrix elements involved are

$$\langle \boldsymbol{\sigma} | \boldsymbol{Q}_{1}^{\boldsymbol{\mu}} | \boldsymbol{\nu} \rangle \langle \boldsymbol{\nu} | \boldsymbol{Q}_{1}^{\boldsymbol{\mu}'} | \boldsymbol{\sigma} \rangle = \frac{1}{2} \left\{ \left[\langle 1 | \boldsymbol{Q}_{1}^{\boldsymbol{\mu}} | \boldsymbol{\nu} \rangle \langle \boldsymbol{\nu} | \boldsymbol{Q}_{1}^{\boldsymbol{\mu}'} | 1 \rangle + \langle -1 | \boldsymbol{Q}_{1}^{\boldsymbol{\mu}} | \boldsymbol{\nu} \rangle \right. \\ \left. \times \langle \boldsymbol{\nu} | \boldsymbol{Q}_{1}^{\boldsymbol{\mu}'} | -1 \rangle \right] + \langle -1 \rangle^{s_{A^{\ast}} s_{B^{\ast}} \sigma} \left[\langle 1 | \boldsymbol{Q}_{1}^{\boldsymbol{\mu}} | \boldsymbol{\nu} \rangle \right. \\ \left. \times \langle \boldsymbol{\nu} | \boldsymbol{Q}_{1}^{\boldsymbol{\mu}'} | -1 \rangle + \langle -1 \rangle^{s_{A^{\ast}} s_{B^{\ast}} \sigma} \left[\langle 1 | \boldsymbol{Q}_{1}^{\boldsymbol{\mu}'} | \boldsymbol{\nu} \rangle \langle \boldsymbol{\nu} | \boldsymbol{Q}_{1}^{\boldsymbol{\mu}'} | 1 \rangle \right] \right\}.$$

$$(33)$$

We assert that the first two terms here give equal contributions to the sum, and the last two do likewise. To prove this we represent $|\nu\rangle$ by $|\Lambda_{\nu}\rangle$ for clarity and use manipulations such as those in Eq. (30) to show that

$$\langle -1 | Q_1^{\mu} | \Lambda_{\nu} \rangle \langle \Lambda_{\nu} | Q_1^{\mu^*} | -1 \rangle = \langle 1 | Q_1^{\mu^*} | -\Lambda_{\nu} \rangle \langle -\Lambda_{\nu} | Q_1^{\mu^*} | 1 \rangle,$$
and
(34)

$$\langle -1 | Q_1^{\mu} | \Lambda_{\nu} \rangle \langle \Lambda_{\nu} | Q_1^{\nu^*} | 1 \rangle = \langle 1 | Q_1^{\mu^*} | -\Lambda_{\nu} \rangle \langle -\Lambda_{\nu} | Q_1^{\mu^*} | -1 \rangle,$$
(35)

where $\sigma | \Lambda_{\mu} \rangle = (-1)^{\frac{1}{2}} | - \Lambda_{\mu} \rangle$. Now, the μ -type sums run symmetrically over positive and negative values, $\alpha(L, 1, 3, 3)$ is only nonzero for even L, for which the Clebsch-Gordan coefficient is symmetric¹² under change of sign of μ and μ' , and in the present case $D^{L}_{\mu,\mu',0} = D^{L}_{\mu,\mu',0}$, so that we can change the signs of μ and μ' in the right hand sides of Eqs. (34) and (35). That proves the assertion for all states ν for which Λ_{ν} = 0. For any state with $\Lambda_{\nu} \neq 0$, there is always another state with the same energy and $-\Lambda_{\nu}$ in the sum. so that the total contributions are equal. Furthermore, we note that the m-type selection rule is only satisfied if $\mu' = -\mu$ in the first term and $\mu' = 2 - \mu$ in the third term of Eq. (33). Using these simplifications, we can write

$$C_{6}(\mathrm{dis}) = C_{6}(0, \mathrm{dis}) + C_{6}(2, \mathrm{dis}) P_{2}^{0}(\cos\theta) + (-1)^{2} D_{6} P_{2}^{2}(\cos\theta),$$
(36)

where C

Nielson, Parker, and Pack: Interactions of linear molecules with atoms

1

$$s(L, \operatorname{dis}) = \frac{1}{2}\alpha(L, 1, 3, 3) \sum_{\mu} C(1, 1, L; \mu, -\mu, 0)$$

$$\times \sum_{p}' \sum_{n}' \frac{(1|Q_{1}^{\mu}|\nu) \langle \nu|Q_{1}^{-\mu}|1 \rangle}{\epsilon_{n}(\epsilon_{\nu} + \epsilon_{n})} f_{0n}(1, 1), \qquad (37)$$

and

$$D_{6} = \frac{1}{2} (-1)^{*A^{*a}B^{+1}} \alpha(2, 1, 3, 3) \sum C(1, 1, 2; u, 2 - \mu, 2) (4!)^{-1/8}$$

$$\times \sum_{\nu}' \sum_{\pi}' \frac{\langle 1|Q_{1}^{n}|\nu\rangle\langle\nu|Q_{1}^{2-\mu}|-1\rangle}{\epsilon_{n}(\epsilon_{\nu}+\epsilon_{n})} f_{0n}(1,1).$$
(36)

In the $C_{\alpha}(L, dis)$ we note that

$$\langle 1 | Q_1^{\mu} | \nu \rangle \langle \nu | Q_1^{-\mu} | 1 \rangle = (-1)^{\mu} | \langle \nu | Q_1^{-\mu} | 1 \rangle |^2, \qquad (39)$$

and define μ -dependent oscillator strengths² by

$$f_{0\nu}^{-\mu}(1,1) = 2\epsilon_{\nu} |\langle \nu | Q_{1}^{-\mu} | 1 \rangle|^{2}.$$
(40)

With this it is clear that the $C_s(L, dis)$, in which $\Lambda = 1$ is conserved, are exactly the well-known terms that appear in Σ -state interactions. Evaluating the coefficients in Eq. (37) gives the usual formulas

$$C_{\theta}(0, \operatorname{dis}) = \frac{3}{2} \sum_{\nu_{+\pi}} '' \frac{\overline{f}_{0\mu} f_{0\pi}}{\epsilon_{\pi} \epsilon_{\nu} (\epsilon_{\pi} + \epsilon_{\nu})}, \qquad (41)$$

and

$$C_{6}(2, \operatorname{dis}) = \frac{1}{2} \sum_{\nu, n}^{\prime \prime} \frac{f_{0n}}{\epsilon_{n} \epsilon_{\nu} (\epsilon_{n} + \epsilon_{\nu})} \left(f_{0\nu}^{0} - \frac{1}{2} f_{0\nu}^{1} - \frac{1}{2} f_{0\nu}^{-1} \right), \quad (42)$$

where 1 -

$$f_{0\nu}=\frac{-}{3}\sum_{\mu}f_{0\nu}^{-\mu},$$

and for the atom $f_{0n} = \overline{f}_{0n}$.

To simplify the equation for the new coefficient, D_6 , we note that the operators Q_1^{μ} and $Q_1^{2\mu}$ are both nonzero only if $-1 \le \mu \le 1$ and $-1 \le 2 - \mu \le 1$ which is true only for $\mu = 1$. This means also that the only states ν that contribute to Eq. (38) are those with $\Lambda_{\nu} = 0$; i.e., Σ states. Using that, reflection symmetry, and Eqs. (39) and (40), one has

J. Chem. Phys., Vol. 64, No. 5, 1 March 1976

Nielson, Parker, and Pack: Interactions of linear molecules with atoms

 $\langle \boldsymbol{\nu} \left| \boldsymbol{Q}_1^1 \right| - 1 \rangle = (-1)^{s_{A^{-2\boldsymbol{\nu}}}} \langle \boldsymbol{\nu} \left| \boldsymbol{Q}_1^{-1} \right| 1 \rangle,$

(43)

$$D_{6} = \frac{1}{6} (4!)^{-1/2} (-1)^{s_{B}} \alpha(2, 1, 3, 3) C(1, 1, 2; 1, 1, 2)$$

and

10

$$D_{6} = \frac{1}{8} \sum_{\nu,n} '' \frac{(-1)^{s_{\nu} + n} Bf_{0} \nu^{-1}(1, 1) f_{0n}(1, 1)}{\epsilon_{n} \epsilon_{\nu}(\epsilon_{n} + \epsilon_{\nu})} \cdot$$
(45)

 $(-1)^{\epsilon_{\nu}} f_{0\nu}^{-1}(1,1) f_{0n}(1,1) / \epsilon_n \epsilon_{\nu}(\epsilon_n + \epsilon_{\nu}),$ (44)

C. Evaluation of C6

Now let us consider ways to calculate or estimate the values of the exact formulas [Eqs. (32), (41), (42), and (45)]. Accurate theoretical or experimental values of $\alpha(B)$ and $\mu(A)$ are often available, so that the $C_6(L, \text{ ind})$ are easily obtained for many systems. $C_6(0, \text{dis})$ can be obtained accurately from experimental frequency-dependent polarizability data using Padé approximants, 5, 16 Eq. (41), and

$$C_{6}(0, \operatorname{dis}) = 3(2\pi)^{-1} \int_{-\infty}^{\infty} \overline{\alpha}_{A}(iy) \alpha_{B}(iy) \, dy,$$
 (46)

where $\overline{\alpha}_{A}(iy)$ is the average polarizability of molecule A at the imaginary frequency iy. If the frequency dependence of the polarizability anisotropy is known, then $C_{6}(2, \text{dis})$ can be obtained the same way.¹⁷ However, if the polarizability anisotropy κ of A is known at only one frequency, then, as we have shown elsewhere,² reasonably good bounds on $C_{6}(2, \text{dis})$ can often still be obtained from

$$C_6(2, \operatorname{dis}) = a_6 C_6(0, \operatorname{dis}),$$
 (47)

 $(\alpha_{\mu} - \alpha_{\mu})/(\alpha_{\mu} + 2\alpha_{\mu}),$

where

(a3/2 - a3/

$$(\alpha_{\rm H}^{3/4} + 2\alpha_{\rm L}^{3/4}) \le a_6 \le \kappa =$$

(48) and α_{1} and α_{1} are the parallel and perpendicular polarizabilities of A, respectively.

Evaluation of Eq. (45) to get D_6 appears to be much more difficult. One might think of relating it to the similar parts of $C_6(2, dis)$ but, in contrast to Σ states, $f_{0}^{1} \neq f_{0}^{-1}$ in Eq. (42), and it should also be noted that the contributions of the excited Σ^* and Σ^- states in Eq. (45) have opposite signs. About all that can be said at the moment is that D_6 should be small compared to $C_6(0,$ dis). The only experiments3,4 that we know of, that do not involve the $\sigma = 0$ and $\sigma = 1$ states in equal numbers and give averages in which all information about D_e cancels out, require detailed analysis of collisions and will be discussed in a future paper.¹ It is now possible (but not easy) to obtain D6 from accurate ab initio calculations, and such calculations are to be encouraged. The equivalent calculations for interactions of P-state atoms have been carried out for some systems, and in the next section we use atomic results to get a rough estimate of D₆ for NO interactions.

III. CALCULATIONS AND RESULTS

The van der Waals coefficients of the previous section are functions of the internuclear distance of the molecule. However, since we use experimental data in the present calculations, the results represent an average over the ground state vibration of the molecule.

Using the experimental dipole moment¹⁸ of NO, μ (NO) = -0.158 D = -0.062 a.u. and the sum rules $S(-2) = \alpha(B)$ of Langhoff and Karplus, ^{5,19} we obtain the values of $C_{\rm S}(L, {\rm ind})$ shown in Table II.

The frequency-dependent polarizability was obtained from refractive index data using the Lorenz-Lorentz equation,²⁰

$$\overline{\alpha}(\omega) = \frac{3}{4\pi n} \frac{(\eta^2 - 1)}{(\eta^2 + 2)} , \qquad (49)$$

where η is the refractive index at frequency ω , and nis the number density of molecules. The Benedict-Webb-Rubin equation of state²¹ for NO gives $3/4\pi n$ = 60 035 a_0^3 at STP. Refractive index values were found at 22 visible and ultraviolet wavelengths ranging from 224.7 to 670.9 nm. 22,23 No infrared data were found; however, only the electronic (essentially the uv) part of $\overline{\alpha}(\omega)$ goes into Eq. (46), and NO has a small dipole moment, so that it is clear from our work²⁴ on CO that the ir spectrum of NO contributes negligibly to the available $\overline{\alpha}(\omega)$. A rough value of the zero frequency polarizability of NO, $\overline{\alpha}(0) = 11.70 \pm 0.27 a_{c}^{3}$, was obtained from available dielectric constant data25 and the Clausius-Mosotti equation²⁰; it is consistent with the value of $\overline{\alpha}(0) = S(-2)$ obtained below but not accurate enough to add any information.

Because there is much less data available in this case than there was for CO^{24} or CO_2 , ¹⁶ nothing could be gained by using the finite linewidth formulas employed there, and the Langhoff-Karplus⁵ procedure was followed directly. Briefly summarized, the frequency-dependent polarizability,

$$\overline{\alpha}(\omega) = \sum_{\nu} \frac{f_{0\nu}}{\epsilon_{\nu}^2 - \omega^2}, \qquad (50)$$

is expanded in the Cauchy series,

$$\overline{\alpha}(\omega) = \sum_{k} S(-2k-2) \omega^{2k}, \qquad (51)$$

and the sum rules S(j) are determined by fitting the experimental data. Then, these sum rules are used to construct upper and lower bounding Pade approximants to $\overline{\alpha}(\omega)$ which can be put in the form of Eq. (50) with a finite sum, and used in Eq. (46) to obtain bounds to $C_{\rm s}(0, {\rm dis})$. In fitting the limited available data with Eq. (51), five coefficients were kept and determined by an iterative procedure in which the first three coefficients were obtained from a linear least-squares method and S(-8) and S(-10) were determined by a nonlinear method²⁶ which assured satisfaction of the Stieltjes constraints. 5 The resulting sum rules, which fit the data with a standard deviation of 0.0068 a, are in Table I. The S(0) in this table was obtained from the Reiche-Thomas-Kuhn⁹ theorem. To obtain reasonable uncertainty limits for the S(j), which reflect the effects of omitting the higher terms in Eq. (51), S(-10) (which is not needed in the [2,1] Pade approximants used) was varied within the range allowed by the Stieltjes constraints and the induced fluctuations in the S(j) were

J. Chem. Phys., Vol. 64, No. 5, 1 March 1976

2059

Nielson, Parker, and Pack: Interactions of linear molecules with atoms

TABLE I. Oscillator strength sums for NO. Hartree atomic units.

1	S (j)			
0	15.0000			
-2	11.518 +0.013			
-4	39.05±0.22			
-6	246 ± 12			
-8	$(4.19\pm0.10)\times10^3$			
-10	$(1.0\pm0.1)\times10^{5}$			

found. Because of the limited data available, these S(j) are considerably less accurate than those obtained recently for other molecules.^{16,24}

The $C_6(0, \text{ dis})$ for the interaction of NO with a number of partners (using the sum rules of Refs. 5, 16, and 24) are in Table II. The values given are the means of the best Padé bounds, but the error bounds have been extended to include the effects of the uncertainties in the sum rules.

Using the experimental value²⁷ of the polarizability anisotropy of NO, $\kappa = 0.161_7$, and Eq. (48), we obtain

 $a_{\rm g} = 0.141 \pm 0.021,$ (52)

and use this and Eq. (47) to generate the $C_6(2, \text{ dis})$ shown in Table II.

To get a rough estimate of D_6 we note that the contribution to s_B in Eq. (45) of closed shells is always zero, and all the atoms in Table II are either closed shell or have one s-type electron outside a closed shell, so that $s_B = 0$. Also, since all the low-lying excited states²⁸ of NO that occur in Eq. (45) are Σ^* states $(s_r=0)$, we expect D_6 to be positive and from Eq. (36) C_8 for the + ($\sigma=0$) state to be larger than that of the -state. This is consistent with the observation that the electronic structure of NO is basically that of closedshell $N_2({}^1\Sigma_r)$ plus one extra electron in a π orbital. The - state corresponds to a π_{π} orbital (see Fig. 1), and the + state to a π , orbital which sticks out in the plane of the atom and is more strongly polarized by it. This interpretation in terms of orbital directions also predicts correctly the relative values of all the Σ - and Π -state polarizabilities calculated for *P*-state atoms by Stevens and Billingsley.²⁰ Assuming that NO is like the O atom, that is, that the ratio of the two C_d coefficients in the direction perpendicular to the NO axis is equal to the ratio of O polarizabilities,²⁰ we have

$$\frac{C_{6}(\operatorname{dis}, \theta = \pi/2)}{C_{*}^{*}(\operatorname{dis}, \theta = \pi/2)} \approx \frac{\alpha_{0}(\Pi)}{\alpha_{0}(\Sigma)} = \frac{0.66}{0.74}.$$
(53)

Letting $D_6 = \delta C_6(0, \text{ dis})$ and using Eq. (36) we have

$$\frac{1-\frac{1}{2}a_6-3\delta}{1-\frac{1}{2}a_6+3\delta} = \frac{0.66}{0.74},$$
(54)

and with Eq. (52) we have $\delta = 0.018 \pm 0.010$.

(55)

which was used to generate the last column of Table II. The uncertainty in Eq. (55) is a guesstimate based on the following: the polarizability of NO is nearer that of C than O; use of the ratio²⁸ for C would give $\delta = 0.035$. But NO has more electrons than O, so that changing the direction of one electron should have a proportionately smaller effect and give a smaller δ than that from O. This uncertainty makes it clear that the present rough estimate of D_6 is mostly an illustrative example calculation.

IV. CONCLUSION

A. Spin-orbit effects

In the preceding sections we have assumed a completely nonrelativistic model with spin and orbital angular momentum completely uncoupled. For ¹I molecules interacting with ¹S atoms this is adequate. However, NO is a ²II-state molecule with spin-orbit splitting constant²⁸ $\overline{A} = 124.2 \text{ cm}^{-1} = 5.66 \times 10^{-6} \text{ a.u.}$ For the interaction of NO with the ³S atoms in Table II, the *r*dependent relativistic corrections are negligible, ³⁰ so

TABLE II. Contributions to the van der Waals C_5 coefficients for the interaction of NO(²II) with several partners. The angle-dependent terms are omitted for the molecular partners as the formulas in the paper are not appropriate for them. Hartree atomic units ($e^2a_5^5$).

Partner	$C_{\epsilon}(0, ind) = C_{\epsilon}(2, ind)$	$C_{\epsilon}(0, dis)$	$C_{g}(2, dis)$	$C_{\rm s}(0,{\rm tot})$	C (2, tot)	Dç
He	0.00535	9.8±1.3	1,41±0.39	9.8±1.3	1.41 + 0.39	0.18+0.11
Ne	0.0103	21.0±3.6	3.00 ± 0.95	21.0 ± 3.6	3.01 ± 0.95	0.38=0.25
Ar	0.0429	69 ± 10	9.9±2.9	69 ± 10	9.9±2.9	1.24 ± 0.79
Kr	0.0647	98 ± 15	14.0 ± 4.3	98 ±15	14.1±4.3	1.8 ± 1.1
Xe	0.106	170 ± 31	24.3 ± 8.0	170 ± 31	24.4 ± 8.0	3.1 ± 2.0
H	0.0174	20.2 ± 1.4	2.89 ± 0.63	20.2 ± 1.4	2.91 ± 0.63	0.36 ± 0.21
Li	0.633	177.8 ± 4.6	25.4 ± 4.4	178.4 ± 4.6	26.1±4.4	3.2±1.9
Na	0.647	217 ± 16	31.1 ± 6.9	219 ± 16	31.7 ± 5.9	3.9=2.3
K	1.11	321 ± 25	46 ± 10	322 ± 25	47 ± 10	5.8±3.5
Rb	1.22	364 ± 30	52 ± 12	365 ± 30	53 ± 12	6.6±3.9
Cs	1.38	314 ± 16	44.3±8.9	315 ± 16	46.2 18.9	5.7±3.3
H,		28.2 ± 2.4				
N ₂		71.1±9.3				
0,		55.2±4.9				
CO,		113 ± 14				
co		78 ± 12				
NO		69 ± 13				

J. Chem. Phys., Vol. 64, No. 5, 1 March 1976

Nielson, Parker, and Pack: Interactions of linear molecules with atoms

that all that need be added is the spin-orbit splitting of the NO. This can be done by using the phenomenological Hamiltonian,

$$H = H_{e} + A L_{e} A S_{e}(A),$$
 (56)

instead of Eq. (5). The two terms in this H are not simultaneously diagonable, so that if we use the eigenfunctions of H_c obtained in the previous sections (denoted by $|\sigma, 0\rangle \equiv |\sigma, M_{s_1} 0\rangle = i \pm , M_{s_1} 0\rangle$ with eigenvalues E^{*}) as a basis, a two by two secular equation results (only 2 × 2 as M_s stays a good quantum number here) which has the simple form

$$\begin{vmatrix} E^* - E & \overline{A}M_s \\ \overline{A}M_s & E^* - E \end{vmatrix} = 0.$$
(57)

This has the eigenvalues

$$E = (E^* + E^*)/2 \pm \{[(E^* - E^*)/2]^2 + (\overline{A}/2)^2\}^{1/2}.$$
 (58)

For small τ with θ not near 0 or π the $E^* - E^-$ term dominates and the present basis is appropriate. For large r or θ near 0 or π and the LS coupling dominates and the appropriate basis is the set $|\Lambda, M_{g_0}, 0\rangle$, which describes the ${}^{2}\Pi_{3/2}$ and ${}^{2}\Pi_{1/2}$ states. In the present examples, the spin-orbit coupling dominates in most of the van der Waais region, and the appropriate potentials are easily generated using Eq. (58).

The above , proach can also be used for the interaction of $NO(^2\Pi)$ with the 2S -state atoms of Table II unless very high accuracy is desired in which case one would need to include the small ($\lesssim0.05~{\rm cm}^{-1}$) magnetic dipole-dipole interaction. 30

B. Discussion

In this paper we have rigorously shown that the van der Waals potential between a II-state molecule and an S-state atom does have the associated Legendre polynomial dependence which others have assumed³ or argued⁴ that it should have. The accuracy of the present $C_6(0, dis)$ for NO interactions is the best obtainable using the present data; other methods¹⁷ would give the same results from the same data. However, it might be possible to obtain improved accuracy by using the method of Starkschall and Gordon³¹ which allows one to also use other types of data. A better determination of the new D_6 coefficients than the present rough estimate is likely to be difficult experimentally and best accomplished by accurate *ab initio* calculations.

*Work performed in part under the auspices of the USERDA and supported in part at Brigham Young University by the USERDA and the University of California Los Alamos Scientific Laboratory through Subcontract No. XP5-72554.

- [†]Present address of GAP and RTP. ¹G. C. Nielson, G. A. Parker, and R. T Pack, to be pub-
- lished.
- ²R. T Pack, J. Chem. Phys. 64, 1257 (1976).
- ³K. Bergmann, H. Klar, and W. Schlecht, Chem. Phys. Lett. 12, 522 (1972).
- ⁴S. Green and R. N. Zare, Chem. Phys. 7, 62 (1975).
 ⁵P. W. Langhoff and M. Karplus, J. Chem. Phys. 53, 233
- (1970); J. Opt. Soc. Am. 59, 863 (1969). ⁶R. T Pack and J. O. Hirschfelder, J. Chem. Phys. 49, 4009 (1968); 52, 521 and 4198 (1970).
- ¹J. O. Hirschfelder and W. J. Meath, Adv. Chem. Phys. 12, 1 (1967).
- ⁸M. E. Rose, J. Math. and Phys. (Cambridge, Mass.) 37, 215 (1958).
- ⁹J. O. Hirschfelder, W. Byers Brown, and S. T. Epstein, Adv. Quantum Chem. 1, 255 (1964).
- ¹⁶The D used here are those of Ref. 6. If one remembers that D (here) = D^{\dagger} (Ref. 11) he can use the formulas of Ref. 11.
- ¹¹M. E. Rose, Elementary Theory of Angular Momentum
- (Wiley, New York, 1957), p. 52.

- ¹⁴ Reference 11, pp. 54 and 60. Because of the difference in conventions (Ref. 10) this is different from the usual reduction.
- ¹⁵Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965).
- ¹⁶R. T Pack, J. Chem. Phys. 61, 2091 (1974).
- ¹⁷P. W. Langhoff, R. G. Gordon, and M. Karolus, J. Chem. Phys. 55, 2126 (1971).
- ¹⁸See F. P. Billingsley II, J. Chem. Phys. 62, 864 (1975) and references therein.
- ¹⁸Better values of some of these polarizabilities are in R. R. Teachout and R. T Pack, At. Data 3, 195 (1971), but the induction contribution is so small here anyway that they make no difference and the S(i) of Ref. 5 are all kept for the dispersion calculations because they form consistent sets. ²⁰J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molec-
- ²⁰J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954), pp. 861 and 883.
- ²¹D. N. Seshadri, D. S. Viswansth, and N. R. Kuloor, J. Chem. Eng. Data 12, 70 (1967).
- ²²Landolt-Börnstein, Zahlenwerte und Functionen (Springer-Berlin, 1962), 6th ed., Vol. II, Chap. 8, pp. 871-901.
- ²³International Critical Tables, edited by E. W. Washburn (McGraw-Hill, New York, 1930), Vol. VII, pp. 6-11.
- ²⁴G. A. Parker and R. T Pack, J. Chem. Phys. 64, 2010 (1976).
- ²⁵C. P. Smith and K. B. McAlpine, J. Chem. Phys. 1, 63 (1932).
- ²⁶D. M. Himmelblau, Applied Nonlinear Programming
- (McGraw-Hill, New York, 1972), p. 458.
- ²⁷N. J. Bridge and A. D. Buckingham, Proc. R. Soc. London Ser. A 295, 334 (1966).
- ²⁸G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand-Reinhold, New York, 1950), 2nd ed., p. 558.
- ²⁴W. J. Stevens and F. P. Billingsley II, Phys. Rev. A 8, 2236 (1973).
- 30W. J. Meath, J. Chem. Phys. 45, 4519 (1966).
- ³¹G. Starkschall and R. G. Gordon, J. Chem. Phys. 54, 663 (1971).

¹²Reference 11, p. 58.

¹⁵Reference 11, p. 110.

THE INTERMOLECULAR POTENTIAL AND VIBRATIONAL RELAXATION OF THE Ar-CO SYSTEM

Gregory A. Parker Department of Chemistry Ph. D. Degree, August 1973

ABSTRACT

The angle, distance and vibration dependence of the Ar-CO intermolecular potential is calculated using the electron gas model to obtain the short range interaction which is smoothly joined onto the long range van der Waals tail which is obtained from accurate C_6 , C_7 , and C_8 coefficients. Our calculated second interaction virial coefficients are compared with experiment and with a simple adjustment of the Ar-CO potential an excellent agreement is obtained. Our spherically averaged potential is also in excellent agreement with a spherical potential inferred from high energy scattering data.

Simplified expressions for the scattering amplitude and differential cross section are obtained in the infinite order sudden approximation. Then, treating the rotations and vibrations in the infinite order sudden and close coupling approximations respectively, vibrational transition probabilities and relaxation rates are calculated using the Ar-CO intermolecular potential. Our calculated vibrational relaxation rates are much smaller than the experimental values.